


L. Glukhivskyi 
 
 
 
 
  
  
 
 
 
 
 
 

 
 

Nonlinear oscillations: numerical 
polyharmonic  simulating  
 

 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
        Kyiv 2024 
  



2 
 

DOI: http://doi.org/10.35668/978-966-479-146-2 
 
ISBN 978-966-479-146-2 (online) 
UDC 534 : 621.3.021:681.3.068.004.4 
 
 
 
 
Reviewers:     I. Kuzio, doct. of engin., prof. 
                      V. Maliar, doct. of engin., prof. 
 
 
 
 
 
 
 
Glukhivskyi L. Yo. Nonlinear oscillations: numerical polyharmonic simulating 
[Electronic resource] / L. Glukhivskyi ; Translation from Ukrainian and editors  
L. Yo. Glukhivskyi. – Kyiv : UkrISTEI, 2024. – 198 p.  
Author's translation from the book  Л. Й. Глухівський «Нелінійні коливання: чисельне 
полігармонічне моделювання», Київ : «Альфа ПіК», 2008. 
 
          The book describes the basics of the differential harmonic method, which belongs to the class of methods 
for numerical modeling of nonlinear oscillations, that is, periodic processes, in systems of one or another physical 
nature, the variables of which are connected by nonlinear connections.The method is based on finding periodic 
solutions of systems of nonlinear differential equations with their approximation by Fourier series and taking into 
account the required number of higher harmonics. 
          The basic software of the differential harmonic method, developed in the FORTRAN-90 language, is 
described. It consists of 24 software modules. When modeling a specific nonlinear oscillation, it is necessary to 
develop three more modules, the development principle of which is given. Ten examples of computer modeling 
of various types of nonlinear oscillations are given, in particular: forced, parametric and free. 
          The book is intended for specialists in the field of computer modeling and analysis of periodic processes 
in nonlinear systems of mechanics, electrical engineering, automatic control, radio physics, acoustics, etc., and 
can also be used as a study guide for graduate students and doctoral students in the relevant sciences. 

 
ISBN 978-966-479-146-2 (online) 
 

 

 

 

  L. Glukhivskyi, 2024 

  UkrISTEI, 2024 
  



3 
 

                                         Preface to the translation of the book 

 
          The monograph [75], the English translation of which is offered to your attention, was 
published in 2008 in Ukrainian. The print run of 500 copies sold out a long time ago. An electronic 
copy of this book was exhibited and is exhibited in a number of electronic libraries: at National 
University "Kyiv Polytechnic Institute named after I. Sikorskyi", National University “Lviv 
Polytechnic”, Zaporizhzhia National University, in the Vernadsky Library, in  Z-library, in the 
reference database "Ukrainika Naukova", etc. 
          Analysis of references in scientific articles and dissertations to this book and visits to its 
electronic copies in electronic libraries of Ukraine showed that the material presented in the book 
is still relevant. The publication of its English translation and its location in electronic libraries 
and repositories will make the book, we hope, available to a much wider circle of scientists, 
graduate students and students, not only in Ukraine, but also abroad. 
          Today, Ukraine is on the path of integration into the European space, in particular in the 
scientific and technical sphere. The author's desire to participate in this process prompted him 
to undertake the work of translating his book into English. The completed translation was edited 
by the author. 
         During the translation, typographical errors and inaccuracies found in the original have 
been corrected, and some additions suggested by the author have also been taken into account.         
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                                          The foreword 
 

           One of the sections of the theory of oscillations, which studies the general laws of 
oscillatory processes in various systems of different physical nature, is the theory of nonlinear 
oscillations - oscillations in systems with nonlinear connections. When modeling processes in 
such systems, it is usually necessary to take their nonlinearities into account as fully as possible. 
          The development of various theories, including and separate sections of the theory of 
nonlinear oscillations, was always stimulated by the need to solve specific applied problems in 
one or another scientific and technical field. The author of this book worked for a long enough 
time on solving the problems of calculating periodic processes in nonlinear electrical engineering 
and electromechanics. To calculate nonlinear oscillations in systems and devices of this area, 
he developed a special numerical method called differential harmonic. It was based on the 
well-known in the theory of oscillations method of harmonic balance and some numerical 
methods for solving nonlinear systems of finite (algebraic, transcendental) equations using the 
apparatus of differential calculus. The author's two monographs [17, 20] can be considered a 
certain summary of this work. 
           This book is attempt of generalization of the received results and representations of the 
developed method together with its software as sufficient universal tool for calculation of 
nonlinear oscillations in systems of the different physical nature, not only in  area of electrical 
engineering. 
          In terms of its style, this book is an attempt to present the material as a study guide for 
senior students and graduate students of technical universities in a wide range of specialties: 
electrical engineering, radio physics, electronics, automation, mechanics, acoustics,  etc., where 
the problems of modeling nonlinear oscillations arise. The author hopes that the book will be 
used by specialists in computer calculation and design.  
          The book also can serve as the manual for development of the special software for 
scientific and engineering calculations, in particular - on algorithmic language FORTRAN. 
          The manuscript of the book was carefully reviewed by the reviewers - employees of the 
Lviv Polytechnic National University, Doctor of Technical Sciences, Professor I.V. Kuzyo  and 
Doctor of Technical Sciences, Professor Malyar V.S. They made a number of suggestions for 
improving the presentation of the material, and the author is very grateful to them for this. 
          The author will be grateful to everyone who will send feedback about this book and, 
perhaps, send suggestions and wishes for its improvement to the author's email: 
gl.lev42@gmail.com 
 
 
 
 
 

mailto:gl.lev42@gmail.com
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 INTRODUCTION 

 
The generalized coordinates of elements of technical systems of any physical nature 

(mechanical, acoustic, hydraulic, electric, radio-electronic, automatic control etc.)  can   be 
considered  as variable functions  of time. Among those  coordinates there are: a) mechanical  
linear  or  angular distance,  speed  and acceleration;   b) electric  charge, current and voltage;  
c) magnetic  intensity, induction, flux, etc. If change of coordinates of system in time is 
nonmonotonic they say there is  an oscillatory process in this  system . 

Oscillatory processes in physical systems are either steady-state (stationary) or transitive 
processes  from  some  steady-state  oscillatory processes  to  other steady-state   processes. 
A separate case of stationary oscillatory process is periodic oscillatory process (periodic 
oscillation). Periodic oscillation is such oscillation in which dependences of  coordinates of the 
system of time are periodic functions. 

The simplest kind of periodic oscillation is a simple harmonic oscillation (or  simply  - a 
harmonic oscillation) 

                                    tAtAta sc ωω sincos][ +=                                 (В.1а) 

or 
                                          )(cos][ ϕω += tAta ,                                      (В.1b) 

here      a  -  variable coordinate;   AAA sc ,,  - amplitudes  of  harmonic  oscillation  of  this 
coordinate;    t  - time;   ω  - circular frequency;    ϕ   - initial phase. 
           Note that in the expressions (B.1), the variable   t   is written in square brackets before 
the equal sign and after the variable  a .   In these expressions (and in other expressions later 
in this book), this way of writing means that the variable  a   is the dependent variable of another 
variable  t   that serves as its argument, that is, it is the independent variable. If a variable 
depends on two or more independent variables, they must be separated by commas when 
placed in square brackets. 
           Amplitude  and  initial phase in expression (В.1b),  amplitudes  in expression (В.1а) are 
connected by the following  dependences 

                                )(;22
cssc AAarctgAAA =+= ϕ .                        (В.2) 

Dependence of the kind (В.1) is known as a common solution (primitive integral) of the 
differential equation 

                                                    02
2

2

=+ a
td
ad ω ,                                              (В.3) 

which describes free oscillations (they also say - natural oscillations) in linear conservative 
systems, i.e. without a energy dissipation. For example, it can be: a mechanical vibratory system 
- a horizontally located spring fixed at one end and  connected with a ball on the other end; a 
mechanical mathematical pendulum in the form of a ball hanging on a non-elastic string; an 
electric oscillatory circuit made up by an inductance and  an electric capacitor, which are 
connected  in series  etc. 
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A ball, an element of the system in the first example, is subjected to action of two forces:  
the force of inertia  

                                                        2

2

1 td
xdmF =  ,                                                 (В.4) 

which is product of the weight of the ball   m    and its acceleration (of the second time derivative 
of the deviation   x    of the ball from equilibrium position), and the elastic potential force 
  

                                                            xsF =2 ,                                                    (В.5) 

which  is  product  of  rigidity  of  the spring     s    and the deviation   x .  Under  the   Newton’s 
second law  the sum of these two forces  is equal to zero: 

                                          02

2

21 =+=+ xs
td
xdmFF .                                     (В.6) 

Having designated 
                                             ax =    ;           2ω=ms ,                                       (В.7) 

we come to the equation of the kind (В.3). 
In the second example, the inertia force which acts on a ball (the ball has mass   m ,  the 

string has length  l  , the angle of deviation of the  string from  vertical position - θ , this force is 
tangent to the circle described by the ball) is equal to 

 

                                                    2

2

1 td
dlmF θ

= .                                                 (В.8) 

The potential restoring  force, which is tending to return the ball to the state of balance, is 
equal to 
 

                                                     θsin2 gmF = ,                                            (В.9) 

here  g   is the acceleration of the gravitation. 
As in the previous case, if considering that the sum of these two forces according to the 

Newton’s second law is equal to zero, and also that at small angles of  deviation of the string 
from  vertical it is possible to accept   θθ ≈sin , and if to designate 

                                                   a=θ ;    2/ ω=lg ,                                       (В.10) 

again we come to the equatio of the kind   (В.3). 
          In the third example (the electric oscillatory circuit created by a  capacitor which has the 
charge   q   and by the inductive coil connected with the flux  φ )  current   i   of the circuit and 
voltage  cu  of the caoacitor are connected by means of two equations: the equation written 
under the second  Kirchgoff  law 
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                                                      0=+ cu
td

dφ
                                                (В.11) 

and the equation connecting the values of the  current and the charge of the caapacitor 

                                                           i
td
qd
= .                                                   (В.12) 

Suppose the capacitor and the inductive coil of this circuit are electromagnetically  linear 
                                               cuCqiL == ;φ  ,                                    (В.13 а,b) 

where  L  - the inductance of the coil and  C   - the capacity of the condenser (constants). After 
differentiation of the left and the right parts (В.12) with respect to independent variable t    we 
shall receive 

                                                             2

2

td
qd

td
di

=   .                                         (В.14) 

In view of   (В.13а)  and  (В.14) 

                                                     2

2

td
qdL

td
idL

td
d

==
φ

 .                                (В.15) 

After insertion in the formula (В.11) the expressions for the derivative    tdd /φ   from the 
formula (В.15) and the expressions for voltage   cu  from the formula (В.13b) and accepting the 
designations  

                                             aq =   ;     21 ω=
LC

                                           (В.16 ) 

we come again to the equation of the kind (В.3). 
It is expedient to note, that in respect of electric circuits the terms "oscillation of  stream", 

"oscillation of  voltage", etc. as a rule are not used in special literature, and there the terms 
"alternating current", "alternating voltage"  are used.   

Examples of oscillations which we have considered above, are oscillations in 
conservative systems (in systems without dissipation of energy, which are under influence only 
of potential forces). Oscillations in such systems are not being attenuated, their amplitudes 
depend only on the initial conditions. 

In a dissipative system, in which processes are accompanied by dissipation of energy, 
the steady oscillations of its coordinates of the kind  (B.1) can exist only in the presence of a 
periodic external driving force whose work compensates this dissipation of energy. 

If dissipation of energy in a system is caused by viscous damping it is necessary to 
consider the force of viscous damping which is proportional to the speed, that is the first 
derivative  of coordinate   a . An example of such amortization in mechanical systems is friction 
in a hydraulic shock-absorber. The equation of movement in such systems looks like  [27] 
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                                   ][2 2
2

2

tpa
td
adh

td
ad

=++ ω ,                               (В.17) 

here   −h  factor of amortization. 
 By means of this equation it is possible to describe also change in time of the  electric 

charge of a condenser in an oscillatory circuit which besides inductance and electric capacity 
has also the active resistance   r   connected in series with them and which dissipates energy. 
It becomes obvious, if besides designations (В.16) also the designation 

 
                                                hLr 2/ =                                                     (В.18) 

is accepted and  ][tp     considered  as alternating electromotive force of an external source. 
If in expression (В.17) external driving  force  ][tp   is a simple harmonious oscillation, in 

this case the expression (В.1) is the periodic solution of this differential equation.   
Writing down the equation of movement, in the further we shall transform higher order 

differential equations to a system of first order differential equations. For example we shall 
transform the second order differential equation (В.17)  to a system of two first order differential 
equations 

                           pabh
td
bdb

td
ad

=++=− 22;0 ω                            (В.19) 

also we shall write down this system in a matrix-vector form   

                                                       ez
td
xd 



=+ ,  (В.20) 

here   

                                             ;
2

1

b
a

x
x

x ==                                                     (В.21) 

                              
1

2
2

2
2

2

1

22 xhx
x

ahb
b

z
z

z
ωω +

−
=

+
−

==  ;        (В.22) 

                                                     
][

0

2

1

tpe
e

e ==   .                                   (В.23) 

In the vector differential equation (В.20) the vector   z      is a linear function of vector   x    
because the differential equation (В.17) is linear : 

 

                                                     x
h

z  ⋅
−

=
2

10
2ω

   .                                  (В.24) 

A more complicated case of periodic oscillations is polyharmonic oscillation, that is such 
oscillation which can be described presented by the sum of two or more simple harmonic 



9 
 

oscillations of different multiples frequencies. In a common  case such oscillation is described 
by Fourier series in the form of  

                        )sincos(][
1

0 tAtAAta sc

n
νωνω νν

ν
++= ∑

=
                   (В.25а) 

or                              ∑
=

++=
n

tAAta
1

0 )(cos][
ν

νν ϕνω .                           (В.25b) 

    In linear systems (in systems in which all connections are expressed by linear 
dependences) polyharmonic oscillations are possible only when external driving forces which 
cause these oscillations, also are polyharmonic. In this case, the external driving force in 
equation (B.19) should be as follows   

                        )sincos(][
1

0 tPtPPtp sc

n
νωνω νν

ν
++= ∑

=
,                  (В.26) 

and then dependences of a kind (В.25) are the periodic decision of the differential equation 
(В.20). 

  It is known that the principle of superposition extends to linear oscillatory systems. 
According to this principle the harmonics of oscillatory processes of various orders (with different 
values of  variable  ν  ) are mutually independent , and in expression (В.25), which is a solution 
of the equation (В.20), only the amplitudes of those harmonics which are present in driving force 
(В.26) differ from zero.  

In nonlinear systems, that is systems, what have communications with nonlinear 
parameters (or even one communication is nonlinear), periodic oscillations of coordinates are 
polyharmonic even then when external driving forces are simple harmonic oscillations as 
nonlinearity of system generate the high harmonics. In this case  the formula of a kind (В.25) 
precisely describe oscillatory process only if   ∞=n   (infinity). In practical calculations of 
oscillations in nonlinear systems (oscillations in nonlinear systems also are named nonlinear 
oscillations  among of specialists) value of    n   they aspire to take as possible smaller, but not 
smaller from that value at which necessary accuracy of approximation of oscillations is satisfied. 

If in the equation of the kind (В.20) dependence of the vector    z     from the vector   x    
is nonlinear  we shall count nonlinear such equation . A subject of consideration in this book in 
the further it will be the nonlinear vector differential equations and algorithms of search of their 
periodic solutions. 

As the nonlinear equation of the kind (В.20) - (В.23) contains driving force  ][tp   which 
is function only of time, it is non-autonomous equation. Nonlinear oscillations in systems which 
are described by such equations, are the forced oscillations.  

The equation of the kind (В.20), describing oscillation in some systems, can not contain 
driving forces which are functions only time, but time is available among arguments of vector 
function   z  . Then the equation of movement of system gets the kind 

 

                                       .0],[ =+ txz
td
xd 



                                  (В.27) 
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Nonlinear oscillations in systems which are described by the equation of the kind (В.27), 
can arise only when there is periodic change of parameters of rigidity, inertia or dissipation of 
energy and when there is their certain parity. Such oscillations have name parametrical 
oscillations . 

If in the equation of the kind (В.27) time among arguments of function   z    is absent 
 

                                                     0][ =+ xz
td
xd 



 ,                                   (В.28) 

this equation is autonomous, and oscillations, as the periodic solution of this equation, are having 
name - self-oscillations. Dissipative systems which can have such oscillations, should have 
mechanisms of replenishment of energy which is being dissipated during each period of 
oscillations.  

Not always the differential equations of movement of systems write down so that their 
coordinates, dependences  of which   are determining, are being contained under derivative 
signs. In such cases under derivative signs other variables which are functionally connected with 
these coordinates write down.  

As an example we shall consider the electric nonlinear one-planimetric circuit containing 
consistently connected inductance, which linkage   φ   is nonlinear function (owing to saturation 
) the current   i    of  a circuit 

 
                                                   ][iφφ =  ;                                                   (В.29) 

active resistance, whose voltage drop  ru    is nonlinear function of the circuital  current   
 

                                                       ][iuu rr =  ;                                            (В.30) 

capacitance, whose charge    q      is nonlinear function of  the voltage  drop  cu       of   
capacitance 

                                                          ][ cuqq =                                            (В.31) 

 
and the electromotive force   e  , and they are periodic functions of time. The differential equation 
of  the kind  (В.20)  for this circuit  is: 
 

                                                0][][][ =−+ texzxy
dt
d 

,                        (В.32) 

here 

                                        ;;
2

1

2

1

qy
y

y
u
i

x
x

x
c

φ
==== 

                  (В.33 а, b) 
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1

21

2

1 ][][
x

xxu
i

uiu
z
z

z rcr

−
+

=
−
+

==  .                  (В.33 c) 

 
Here the vector  z   is nonlinear function of a vector  x   (nonlinear function   ][ 1xur     is 

a component of a variable  1z  ).  For more general case the vector      z     can be function also 
of   vector  y : 

                                                   ],[ yxzz  = .                                             (В.34) 
  
The equations of kinds (В.20) and (В.32) are written down in normal Cauchy form - they 

are solved concerning derivatives. More  general form of image of the vector differential equation 
is the following form 

                                               0=−+ ezy
dt
dB 

 ,                               (В.35) 

 
here  B  - some constant matrix. If this matrix is identity matrix, image of the equations  is 
equivalent as image in normal form. On occasion can be  xy  = , then   ][xzz  = , and the 
equation becomes  as  (В.20), (В.27) or (В.28). 

Separate rows of a matrix   B    can be zero, then equation of a kind (В.35  represents 
system of the algebraic and differential equations. 

       Definition of nonlinear oscillations in any system of any physical nature from the point of 
view of mathematics is search of the periodic solution (or of periodic solutions) of nonlinear 
systems of the differential equations, which describe this system.   

In development  of methods of calculation and the analysis of nonlinear oscillations 
(search of periodic solutions of nonlinear systems of the differential equations describing these 
fluctuations) during long time , since the end of 18-th century, were engaged many known 
scientists: A. Puankare, A. Lyapunov, Van der Pol, J. Strett, A.Krilov, A.Andronov, 
L.Mandelshtam, M. Bogolyubov, J. Mitropolsky, j. Hale, T. Hayasy and others. They have 
developed set of the analytical methods, which have enabled to comprehend essence of 
nonlinear oscillations.  

 The beginning of a computer epoch has given a strong push to development of numerical 
methods of search of periodic solutions of nonlinear systems of the differential equations. In this 
direction, in particular - in the field of nonlinear electrical engineering, it is necessary to note 
T.Aprill's and T.Trik's investigations and a  significant contribution of the Ukrainian scientists 
G.Pukhov, A.Samoylenko, V. Bondarenko, A. Petrenko, L.Sinitskiy, R.Filts, etc. 
           Consideration of methods of calculation of nonlinear oscillations can be found among 
set of monographies and manuals, in particular in [2, 8, 10, 27, 29, 32, 37, 38, 40, 42, 45, 46, 
51, 53, 55, 56, 60, 62, 65, 66].  
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          The methods  which are based  on Fourier series  are take  a separate  place  among 
methods of calculation of nonlinear oscillations. The most known among them are: [4-7, 27, 32, 
46, 51]: a method of harmonic linearization, a method of small parameter, asymptotic methods 
of   Krylov and Bogolyubov, a method of harmonic balance. Further we shall briefly 
characterize  their essence. 

In the method of harmonic linearization we accept an assumption: input variables and 
output variables for each nonlinear system are monoharmonious (the high harmonics are 
neglected). Amplitudes of harmonics of output variables are defined on amplitudes of input 
variables by means of formulas for definition of coefficients of Fourier series, thus real nonlinear 
relations in system are replaced by  linear relations between the first harmonics of input variables 
and output variables.  

According to a method of small parameter at the solved differential equations allocate 
separately nonlinear part from a multiplier, a being small parameter. So, if in the independent 
equation of a kind (В.17) the adder instead of constant multiplier  h2   contains nonlinearity 

],[
dt
daaF    the equation is led to a kind 

                                         02
2

2

=++ a
td
adF

td
ad ωε  .                             (В.36) 

When the parameter  ε  has zero value the oscillatory system corresponding this equation, 
becomes linear conservative. The periodic solution for last is accepted as approximation to 
which at some nonzero value  ε  search for corrections in the form of series on degrees of this 
small parameter. The method can be applied only to quasilinear systems for which the parameter   
ε    is small.  

By means of asymptotic methods of Krylov - Bogolyubov, in particular - of averaging 
method (other name - a method of slowly varying amplitudes), periodic solution for quasi linear 
systems with small attenuation is searching as monoharmonious fluctuation of a kind (В.1), in 
which amplitudes (or amplitudes and phases) are functions slowly varying . The nonlinear 
equations which are being solved  are being reduced to more simple equations by means of 
averaging  on the period of values  of amplitudes . These equations is called a bridged. 

Among above considered methods the method of harmonic balance  differs that it can be 
applied not only to quasi linear systems, and to essentially nonlinear, and allows to use for 
search of dependences of movement of coordinates not only one harmonic, and to search for 
the solution in the form of polyharmonious approximation. The essence of a method is 
replacement of periodic solutions in the differential equations describing oscillation  by Fourier 
series. Thus the problem of search of the periodic solution of the differential equations is reduced 
to the solution of system of the nonlinear finite equations (i.e. not differential – algebraic, 
transcendental), whose unknown variables are amplitudes of harmonics. The methods which 
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are based on such approximation, in [27] refer to as frequency methods of obtaining  of periodic 
solutions.  

From the beginning the method of harmonic balance was considered by researchers as 
analytical: with its help at the analysis of nonlinear oscillatory systems searched for the analytical 
dependences connecting amplitudes of harmonics of variable coordinates with parameters of 
system and amplitudes of harmonics of driving forces. It opened opportunities to the analysis of 
the found dependences and definition of conditions of existence of fluctuations. However at 
reception of such dependences when except for the account of the basic harmonic the task of 
the account and the high harmonics is put, it leads to so difficult analytical transformations and 
formulas (especially at presence of nonlinearity in the functional dependences, connecting two 
and more variable), that they lose "transparency" and practical suitability to the analysis. 
Therefore only in rare instances at the analysis of real nonlinear oscillatory systems, except for 
the most simple this method is possible to consider even one of the high harmonic together with 
the basic harmonic   [7]. 

If the method of harmonic balance is considered numerical, that is, when it is applied in 
each specific case, the goal is not to obtain analytical dependences of of amplitudes harmonics  
of variable coordinates, but only numerical values of amplitudes, then this avoids complications 
when accounting for each next higher harmonic. Such application of a method of harmonic 
balance in a combination with some numerical methods of the solution of systems of the 
nonlinear algebraic equations was  offered by the author of this book to the solution of some  
important applied problems in area of nonlinear electrical engineering [9, 11 - 26, 68]. The 
offered updating of a method of harmonic balance as of universal numerical method of definition 
of periodic solutions of nonlinear systems of the differential equations  has been named by 
author the differential harmonic method. One of the major tasks at its development was to 
achieve high levels of formalization and minimization of volume of a spadework at its application 
to calculation of nonlinear fluctuations in each concrete case.  

The regular statement of this method and examples of its application will are made in 
following chapters of this book.  
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                                                                  Chapter 1 

                                                MATHEMATICAL BASES 
        OF DIFFERENTIAL HARMONIC METHOD 

 
1.1   Harmonic algebraization of the differential equations 

 
Consideration of this question we shall begin with assertion, that the differential harmonic 

method begins with a method of harmonic balance.  
The first action, which is necessary for  use of  method of harmonic balance, is 

transformation of the differential equations, whose periodic solution is sought, to the algebraic 
equations, whose unknown variables are amplitudes of Fourier series approaching the periodic 
solution. Such transformation of the differential equations in algebraic we shall name their 
harmonic algebraization .  

For simplicity of a description of  harmonic algebraization and algorithm of search of the 
periodic decision we shall consider at first an example of one nonlinear differential equation of 
the first order. It is obvious, that it can be only the non-autonomous equation because only the 
forced oscillation may be described by differential equation of the first order. We will consider  
harmonious algebraization of nonlinear systems of the differential equations, which may be 
autonomous or non-autonomous, and also algorithms of search of their periodic decisions only 
after that. 
           Thus, the differential equation is considered  

                                       ez
td
yd

=+ ,                                                       (1.1) 

here  

                                             [ ] [ ]Ttetee +==                                                 (1.2) 

    –  the set external compelling force (indignation), being T -periodic function of time (here T
- the period); 

                                                             ];[xyy =                                                  (1.3) 

                                                        ],[ yxzz =                                                 (1.4) 

- some nonlinear functional dependences. 
As it has been already noted in introduction, square brackets in this book are applied in 

formulas only for record inside of them argument (arguments) of functional dependences (not 
at formulas square brackets are traditionally applied to links to references).  



15 
 

The periodic decision of the nonlinear scalar differential equation (1.1) is oscillation with 
the period T  of coordinate   x  

                                     ][][ Ttxtxx +==  ,                                                 (1.5) 

which is argument of nonlinear dependences (1.3), (1.4). Variables   y    і   z    in equation (1.1)  
are periodic dependencies of time with the same period :  
 

                                ];[][ Ttytyy +==                                                      (1.6) 

                                   ][][ Ttztzz +==   .                                                    (1.7) 

Let's carry out approximation of dependences (1.2), (1.5) - (1.7) by  trigonometrical series 
 

       
,,,,;,,,

);sincos(][
1

0

EZYXAezyxa

tAtAAta
n

sc

==

++= ∑
=

νωνω
ν

νν
                 (1.8) 

here 

                                        T/2πω =                                                               (1.9) 
 

–  the basic circular frequency (circular frequency of the first harmonic). 
After substitution in (1.1) approximations of dependences of variables  y ,  z   and  e  as 

functions of time by series of a kind (1.8) and performance of operation of differentiation  is 
received transcedental equation 
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                                                                                                                               (1.10) 

 

 The equation (1.10) is satisfied for all values   t    only in case if 
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From (1.11) we receive system of the nonlinear algebraic equations  
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  With the purpose of compactness we shall write down system of the equations (1.12) in 

the matrix form. For this purpose using coefficients of trigonometrical series (1.8) (constant 
components and cosines amplitudes with sines amplitudes), we shall form matrixes-vectors of  
kind 
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Let's name these matrixes-vectors as vectors of amplitudes. Their size (quantity of elements) is 
equal nNg 21+= .   

Further matrixes-vectors can be designated and so: 

              ).,,...,,,( 110 sncnscГ AAAAAcolonA =


                        (1.13e) 

Often, even before the calculation of nonlinear oscillations, it can be concluded that in 
the coordinates of the analyzed system the amplitudes of harmonics of some orders are always 
zero. For example, if in electric circuits nonlinear elements have characteristics of odd type, then 
at sinusoidal supply of these circuits currents and voltages of branches do not have constant 
components and can have harmonics only of odd orders [41]. In three-phase electrical circuits 
connected in a "star" without a neutral conductor, the phase currents cannot have harmonics 
whose order is a multiple of 3, and so on. In such cases, at the already selected value  n , the 
size of the amplitude vectors (the number of their elements) decreases due to the removal from 
consideration of those amplitudes that are known to be zero. 

Amplitude vectors that do not have among their components harmonic amplitudes of 
some orders of magnitude smaller than , we will call abbreviated amplitude vectors. 

If the coordinates of periodic processes contain only odd harmonics, then for this case 
the reduced vectors of amplitudes have the form 

 
            ,),...,,,,,( 3311 sncnscscГ AAAAAAcolonA =



                 (1.14) 
 
here n  is an odd number. The size of the amplitude vector (1.14)  nNg +=1  . 
               Taking into account the notation (1.13) or (1.14), the system of algebraic equations 
(1.12) can be written as: 

                                 ГГГ EZYD


=+ω ,                                      (1.15) 

here  
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            (1.16) 

- constant square matrix of order gN  . Hereinafter we will call it the differentiation matrix. 
If in the equation of the form (1.15) the vectors of amplitudes are reduced, then the 

matrix  D   is also an abbreviated differentiation matrix. It is obtained from the matrix of the form 
(1.16) after removing from it those rows and columns that correspond to the removed 
components of the vectors of amplitudes. 

If the time dependences of the system coordinates contain only odd harmonics, then 
for this case the abbreviated differentiation matrix has the form 
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                   (1.17) 

The order of this matrix is  nNg +=1  . 

The algebraic vector equation (1.15) can be considered as a harmonic 
representation of the differential equation (1.1). The transition from (1.1) to (1.15) is a 
harmonic algebraization of the differential equation (1.1). 

Note that when performing harmonic algebraization of differential equations with 
periodic solutions, it is not necessary to perform operations (1.10) - (1.12) each time. This 
transformation in order to obtain the already completed form of the algebraic vector equation 
of the form (1.14) can be formalized: 

1) the variables of the differential equation (in equation (1.1) these are variables 
ezy ,, ) must be replaced by the corresponding amplitude vectors (here are the amplitude 

vectors  ГY


,  ГZ


 and  ГE


); 

2) replace the differentiation operation by multiplying on the left by the circular 
frequency  ω   and matrix .D  

Equation (1.15) explicitly includes amplitude vectors ГY


  and ГZ


and implicitly the 
amplitude vector ГX



 , which is the root of this equation. Amplitude vectors  ГY


 ,  ГZ


 and   

ГX


are interrelated. Let's follow this connection. 

Assume that the value of the vector  ГX


 is known. Then, taking into account (1.8), at  
xa = , is also known (approximately) function (1.5). Using it as an argument of nonlinear 

functions (1.3) and (1.4), we can obtain the approximation of T --periodic dependences (1.6) 
and (1.7). The latter can be decomposed into Fourier series of the form (1.8)  at  ya =    and   

za =    with the determination of the coefficients of the series by known formulas 
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here ηa - value of function ][ηaa =   when the value of the angular coordinate  .tωη =  



19 
 

Since the vectors of amplitudes ГY


  and  ГZ


 are formed from these coefficients by 
formulas (1.13) or (1.14), if the values of these coefficients have become known, then the values 
of the vectors of amplitudes  ГY



  and  ГZ


 have also become known. 
As you can see, for each given value of the vector  ГX



you can find the corresponding 
values of the vectors  ГY



  and ГZ


. Therefore, there are such dependencies 
 
                      ].[;][ ГГГГГГ XZZXYY



==                             (1.19а, b) 
 
 Let's call these dependences harmonic characteristics. They can be considered as 

harmonic mappings of functions (1.3) and (1.4). 
 Harmonic characteristics (1.19) are nonlinear due to the nonlinearity of dependences 

(1.3) and (1.4).                                                                              
The algorithm for calculating the harmonic characteristics (1.19) is described here 

schematically, it is considered in more detail below. 
The procedure of harmonic algebraization is considered above on the example of the 

differential equation of the form (1.1), in which the sign of the derivative is not a coordinate  x , 
the periodic dependence of time (1.5) of which is the solution of this equation, but a variable  y
, that is a function of the variable x .  This notation of the differential equation is more general, it 
occurs, for example, in the analysis of electric circuits, when in the differential equations that 
describe them, there are derivatives of time not currents, but flux couplings, which are functions 
of these currents. If in the differential equation the intermediate variable is absent and under the 
sign of the derivative there is a direct variable, the periodic dependence of which is the sought 
solution, the differential equation has the form 

                                    ,][][ texz
td
xd

=+                                             (1.20) 

 
then its harmonic reflection is a finite equation of the form 
                                                  
                                                  ГГГ EZXD



=+ω .                                      (1.21) 
 

1.2   Determining  the  periodic solution  
               After performing harmonic algebraization of the differential equation (1.1)  or (1.20), 
the determination of their periodic solutions is reduced to the solution of nonlinear vector finite 
equations (1.15)  or  (1.21). Consider first the solution of equation (1.15). 
              Although the amplitude vector in equation (1.15) does not explicitly appear, it is the root 
of this equation. To find it, we use one of the most effective numerical methods for solving 
nonlinear algebraic (finite) equations - Newton's iterative method [44, 48]. It is characterized by 
a fairly high - quadratic - rate of convergence. However, to ensure the very convergence in its 
application, it is necessary to set, as is known, a "good" zero approximation, which is located 
within the so-called area of attraction of the root. 
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             To obtain such a "good" approximation, we will use the method proposed in [64], called 
the -characteristic method. According to the -characteristic method, multiply in equation 
(1.15) the vector of forcing forces by a scalar parameter    and obtain a new equation 
 

                                                                          (1.22) 
 

             At  = 0  in (1.22)  there is no forcing force, and then this vector equation has a trivial 
(ie - zero) solution  . At  = 1, equations (1.22) and (1.15) are identical. Dependence 

of the amplitude vector  on the parameter   

                                                       ][hXX ГГ



=                                                   (1.23)                                                                                             
 
is a  -characteristic of equation (1.22).  At = 0  it passes through the zero solution, and at 

= 1  -  through the root of equation (1.15). 
Dependence (1.23) can be obtained by integrating some vector differential equation for 

which this function is a solution. To obtain the following differential equation, we differentiate 
equation (1.22) by the parameter  : 
 

                                                                        (1.24) 

Here the derivatives of the amplitude vectors    and     with the parameter  must be 
disclosed according to the rule of differentiation of complex functions, taking into account the 
existence of harmonic characteristics (1.19): 

 

                                          (1.25) 

Then, taking the notation 

                             ,                              (1.26а, b) 

differential equation (1.25) is reduced to the form 

                            .                             (1.27) 

Here   and   are square matrices of the order   of differential parameters of 
harmonic characteristics (1.19). Let us call these matrices matrices of differential harmonic 
parameters (MDHP). 
            MDHP (1.26) relates the values of infinitesimal increments of the components of vectors   

,  and    ie, infinitesimal increments of amplitudes of all considered harmonics of 
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dependences (1.5) - (1.7). If functions (1.3) and (1.4) are nonlinear, then matrices (1.26) are 
variables and are functions of the vector  .. The MDHP calculation algorithm is outlined 
below. 
             To obtain the dependence (1.23) in tabular form, the differential equation (1.27) must 
be integrated by one of the numerical methods for the parameter   from  = 0  at zero initial 
conditions    to  = 1. The value of the vector  obtained at  = 1 can be 
considered as an approximate solution of the finite equation (1.15) and as a "good" zero 
approximation to refine the solution by Newton's method. 
             The  formula for refining the solution of equation (1.15) by Newton's method has the 
form [44, 48] 

                                                              (1.28) 

here    - iteration number; 
                                              
                                                                                  (1.29) 
 

- the value of the Jacobi matrix of the left part of equation (1.15) at    ; 
 
                                                                          (1.30) 
 

- the value of the residual vector of equation (1.15)  at  . 
           In order to refine the solution of equation  (1.15)  according to the iterative scheme  (1.28) 
not to rotate the martix, but to solve a system of linear equations, this scheme can be written as: 
 

                                                                  (1.31)                                                                       

 
In  (1.31)  first line is a system of linear equations with respect to the vector unknown   -  
it is vector of amendments.  

Iterations according to schemes  (1.28)  or   (1.31)  must be performed until the required 
accuracy of solution of equation  (1.15)  is reached. 

If the differential equatiom whose periodic solution we are looking for has the form  
(1.20)  and its harmonic reflection has the form  (1.21), than the differential equation required to 
obtain -characteristic has the form 

                                                                  (1.32) 
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And necessary for refining the solution by Newton’s mrthod the residual vector and the Jacobi’s 
matrix in  -th iteration have the form 

 
                                           ;                           (1.33)         
                                                .                                        (1.34) 
 

As you can see, to obtain the root of equation  (1.15)  or  (1.21) in the described way, 
it is necessary to calculate the values of the amplitude vectors ,   and matrices    ,  

  for the value of the amplitude vector    when obtaining the zero approximation by 
calculatіng the h-characteristic and at each iteration when refining the solution by Newton’s 
method.     

                           1.3    Algorithm for calculating harmonic characteristics 

          In the previous section, the calculation of the values of the amplitude vectors   ГY


  and   

ГZ


 for the given value of the amplitude vector ГX


 , ie the calculation of the harmonic 
characteristics (1.19), is described schematically. Let's look at it in more detail in order to obtain 
an algorithm suitable for computer implementation. 
        If the value of the amplitude vector  ГX



 is given, then the value of the variable x   for any 
value of the angular coordinate   tωη =    is determine, taking into account (1.8), by the 
formula 
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Using the nonlinear dependence (1.3), which connects the variables   x   and   y , and the set 
of values of the variable   x  calculated by formula (1.35) for the set of values of the angle η   

from zero to  π2 , we can define in the form of a table π2 -periodic dependence ][ηyy =   as 
a function of angle η .  Then, similarly, using the dependence (1.4), which connects the variables  
z , x   and y , and the dependence just obtained in the form of a table dependence    ][ηyy =   

we can determine the dependence  ][ηzz = ,  in tabular form, which is also a π2 -periodic 

function of the angle η . To find the values of the components of the vectors of amplitudes  ГY


  

and   ГZ


,  it is necessary to obtain the numerical dependences ][ηyy =     and    ][ηzz =    
and  decompose them into Fourier series by the formulas of the form (1.18): 
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The integrals in formulas (1.36) will be calculated by one of the known numerical methods. To 
do this, we apply a one-dimensional grid of equidistant m  nodes  for the period   πω 2=T    
(see Fig. 1.1), the number of which must be  sufficient to ensure the required accuracy of 
calculating the values of the integrals.  
 
     x 
                                                              T= 2  
   
  
   
  
 
     , rad 
 1 2 3 m  
 
 
                      Fig. 1.1. Dependence of the variable  on the angular coordinate    on the period 

          If the dependences ][ηxx =  , ][ηyy =   and  ][ηzz =   contain only odd harmonics 
and the amplitude vectors have the form (1.14), then in integrals (1.36) the upper limits of 
integration must be changed from  π2    to   π , before the integrals put a coefficient   2  and 
impose a one-dimensional grid of   m     nodes on the half-period. 
         From the values of the functions   ][ηxx = , ][ηyy =    and  ][ηzz =   in equidistant 
m   nodes of the grid in the period (half-period, if the searched functions contain only odd 
harmonics) we form column vectors 

                                );,...,,( )()2()1( mв xxxcolonx =                             (1.37а)                                   

                               );,...,,( )()2()1( mв yyycolony =                             (1.37б)                                   

                                ,),...,,( )()2()1( mв zzzcolonz =                             (1.37в) 
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which we call nodal vectors. 
         The value of the node vector   вx   (ie - the set of values of the variable  x    in the nodes 

of the period) can be obtained by the value of the amplitude vector  ГX


  by performing a 
matrix operation 

                                                  ,Гв XFx


 =                                                   (1.38) 
Here 
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 (1.39) 

 
- a matrix with dimensions   gNm×   , the elements of which are units in the first column and 
in the other columns - numerical values of trigonometric functions ,cosνη   

),...,1(sin n=ννη    in the grid   m   nodes for the period. 
         Having calculated by formula (1.38) the value of the node vector  вx , the structure of 
which is given by formula (1.37a), determine the values of the node vectors вy   and   вz  whose 
structures are given by formulas (1.37b) and (1.37c), in the following order: 
         1) by  the values of the n1st, 2nd,…, m-th  component of  the vector   вx   and  by  the 
dependence (1.3) we determine the values of the 1st, 2nd,…, m-th component of the vector  
вy ; 

         2) by the values of the 1st, 2nd,…, m-th  component of the vectors вx   and   вy  and 
depending  on  (1.4)  we determine  the values of the  1st, 2nd,…, m-th  component  of  the 
vector   вz . 
        Calculating the values of vectors  вy   and   вz  the value of the vector  вx   is the 
implementation of the so-called "instantaneous" model of the process in the period (half): the 
instantaneous values of the independent variable  x  in the nodes of the period (half) determine 
the instantaneous values in the same nodes of dependent variables y   and   z . 
        According to the values of the nodal vectors   вy  and  вz  found by the described method, 

it is possible to calculate the values of the corresponding vectors of amplitudes ГY


  and   ГZ


. 
Each of the components of these vectors should be determined by formulas (1.36), using one of 
the known numerical methods for calculating the values of definite integrals. So, for the 
components of the vector   ГY



  we write 
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         (1.40) 

here   )()2()1( ,,, mηηη   - the value of the angle  η   in the  )()2()1( ,,, mηηη    nodes to 

pass the period (southern period); )()2()1( ,,, mξξξ  - weights of the selected quadrature 
formula (formula for calculating the values of a definite integral). When using the quadrature 
formula of rectangles or trapezoids   1)()2()1( ==== mξξξ  ;  if we apply Simpson's 
quadratic formula, then the number of nodes  m  for the periods (southern period) must be even 
and 34,32,,34,32 )()1()2()1( ==== − mm ξξξξ  . 

           Calculation by formulas of the form (1.40) values of all components of vectors   ГY


 and  

ГZ


 can be carried out by performing the following matrix operations: 
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==                               (1.41 а, б) 
here 
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                                              (1.42) 

–  matrix with dimensions  mNg × ; 

                                      )1,...,1,1,
2
1(diag=Θ                                           (1.43) 
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– diagonal matrix with size gN  ; 

  −TF   a matrix transposed with respect to the matrix  (1.39); 
−ηξ  diagonal order  m   matrix, the elements of the diagonal of which are the weights of the 

selected quadrature formula. 
             The matrices  F   and  G   we will  call matrices of harmonic transformations, in 
particular G  - the matrix of direct harmonic transformation (from values in nodes of the period 
or half-period to the values of harmonic amplitudes) and   F - the matrix of inverse harmonic 
transformation (from values of harmonic amplitudes to values in nodes). When solving each 
specific problem (project) for the given values n   and   m   values of these matrices should be 
calculated only once and kept unchanged until the end of the calculations at these values   n    
and m .  Expressions (1.39) and (1.42) for matrices of harmonic transformations correspond to 
random ones, when the amplitudes of harmonics have constant components and all harmonics 
up to n -th including. If abbreviated amplitude vectors are used in the calculations, then instead 
of matrices  F   and G   in formulas (1.39) and (1.42)  should be the reduced matrices of 
harmonic transformations  скF and  скG . 
            The matrix  скF  can be obtained from the matrix  F  by removing from it those columns 
that correspond to the components of the amplitude vector, which are removed in the formation 
of a shortened amplitude vector. Thus, if the abbreviated amplitude vector has the form (1.14), 
ie has in its composition harmonics of only odd orders, then the matrix  скF  takes the form 
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









= . (1.44) 

 
When calculating the value of this matrix, keep in mind that the angular coordinate of the m  -
th   node mmm /)1()( −=πη ,  ie the grid of m  nodes is plotted in half, and that the 
number  n   is odd. 
            A matrix  скG  can be obtained by formula (1.42) if instead of a matrix TF  we substitute 

a matrix T
скF  and instead of a matrix Θ  - a matrix  скΘ formed from a matrix  Θ   by removing 

rows and columns with element numbers that are removed from the amplitude vector to form a 
shortened amplitude vector. In the case where the reduced amplitude vectors have harmonic 
amplitudes of only odd orders, the matrix   Θ  is a unit matrix. 
            The algorithm described above for calculating the values of the amplitude vectors ГY



 
and ГZ



 for a given value of the amplitude vector ГX


,  ie the calculation of one "point" of the 
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harmonic characteristic (1.19), is called algorithm 1.1. Its operations can be described by the 
following sequence of directives: 
             a) for a given value of the vector of amplitudes  ГX



 by formula (1.38) to determine 
the value of the nodal vector вx ;  
             b) by the values of the components of the vector   вx   and formulas (1.3) and (1.4), 
which can be specified both analytically and in tabular form, calculate the values of all 
components of the node vectors вy   and  вz  (calculation of the values of the nodal vectors 
and the value of the nodal vector  вy   and  вz  - is the implementation of the instantaneous 
period (or half-period) model of the process); 
            c) according to formulas (1.41) and the values of the vectors calculated вy    and   вz  

according to item “b” of this algorithm and calculate the values of the vectors of amplitudes ГY


  
andі  ГZ



. 
 

1.4  Algorithm for calculating matrix values 
of differential harmonic parameters 

 
          First, we derive formulas for calculating the values of the differential 
parameters of harmonic characteristics (1.19) - matrices YГS  and ZГS . 
According to formulas (1.26), (1.38) and (1.41) we have 
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                    (1.45 а,б) 

here 

                                         
в

в
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в
yв xd

zdS
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ydS
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



== ;                                    (1.46 а,б) 

 
- square order    m  atrices. They are diagonal because in nodal vectors  вy ,  вz   and вx  
interconnected are only their components of the same name (ie components with the same 
indices, for the same values of the angular coordinate in the period or half-period). Diagonal 
elements of matrices (1.46) are the values of complete derivatives of functions (1.3) and (1.4) 
on the variable   x   in the nodes of the grid on the period (half-period). 
In the general case, when a variable z   is a function of two arguments - x  and y , we have 
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                 (1.47) 

here 
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- diagonal matrices of order  m , their elements are equal to the values in the nodes of the grid 
of partial derivatives of the function  z  according to its arguments y  and x . 
            Therefore, to calculate by formula (1.45) the values of MDGP  YГS and ZГS  you must 
first calculate the values of the matrices 
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dydiagS =                     (1.49а) 
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The elements of these matrices are calculated using dependencies 
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=               (1.50) 

 
which are obtained by differentiating (analytical or numerical) dependences (1.3) and (1.4). 

 
            Calculation of values of diagonal elements of matrices yвS , zyвS  and zxвS  on values of 

elements of a vector  вx , together with calculation of values of nodal vectors and, is the 
implementation of the instantaneous period (half-period) model of the process. 
            Matrices   yвS , zвS , zyвS   and  zxвS  are called matrices of differential parameters of 
characteristics (1.3) and (1.4) in grid nodes or matrices of node differential parameters (MNDP). 
            The algorithm for calculating the value of  MNDP by the method described above (call it 
algorithm 1.2) can be expressed by the following sequence of directives: 
            a) for a given value of the amplitude vector  ГX



and formula (1.38) to calculate the value 
of the nodal vector  вx ;  
             b) by the value of the vector вx  and the dependence (1.3) to calculate the value of the 
vector вy  (instantaneous on the period (half-period) model of the process);  
             c) according to the values of vectors  вx , вy and formulas or algorithms that 
approximate the dependences (1.50), calculate the value of MNDP yвS ,  zyвS , and zxвS  (the 
instantaneous (half-period) process model);  
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            d) according to formulas (1.47) to calculate the value of MNDP zвS ; 
            e) by formulas (1.45) calculate the value of MNDP  YГS  and  ZГS . 

            Consider the second method of calculating the values of MNDP, more economical in its 
numerical implementation - it requires fewer arithmetic operations. 
            The matrix  YГS , which is a derivative of the vector function  ГY



 by the vector argument  

ГX


, in the expanded form of the record has the form 
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    (1.51) 

 
 
      Let’s derive an expression for one of the elements of the matrix (1.51) - a partial derivative

µν cs XY ∂∂ / . Taking into account (1.36a) and (1.35) we obtain 
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here    

                                                  ][ηχχ ==
dx
dy

                                             (1.53) 

 
- dependence on the angular coordinate  η   of the derivative   .dxdy  
            Expressions for other elements are displayed similarly. Here are them without output 
(distrustful reader is recommended to display them yourself): 
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    Let's approximate the dependence  ][ηχχ =    by the Fourier series: 
 

                      .)sincos(][
2

1
νηνηηχ ν
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=
                            (1.55) 

 
After substituting (1.55) into formulas (1.54), performing trigonometric transformations and 
integrating using tabular integrals, expressions (1.54) are determined by the coefficients of the 
series (1.55), and the matrix (1.51) takes the form: 
 

                                                  ×=
2
1

YГS                                                                      (1.56) 
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All coefficients of the series (1.55) to the  n2 -th harmonic can be calculated, by analogy with 
formulas (1.41), by performing such a matrix operation 

 
                                                 ,2 yвnYГ vGV 



=                                                      (1.57) 
here  

                            ),,...,,,...,,,( 2211 nnYГ QPQPQPRcolonV νν=


                     (1.58) 
 - vector of amplitudes of dimension n41+ , formed from the coefficients of the series (1.55); 

              ),...,,( )()2()1( myв xd
yd

xd
yd

xd
dycolon=ν                            (1.59) 

 - vector-column, the components of which are diagonal elements of the matrix (1.49 a); 
nG2  - a matrix of direct harmonic transformation of the form (1.42), but which has 

nNg 21+=  not but nNg 411 +=   lines. 

            Formulas for calculating the values of the matrix   ZГS   are obtained similarly, only when 
calculating the values of the vector   ZГV



 of the form (1.58) by a formula similar to formula (1.57), 
the vector  zвν  is formed by the rule 

 
             (1.60) 
 

 
            The algorithm for calculating the value of MNDP in the manner described above 
(algorithm 1.3) can be expressed by the following sequence of directives: 
              a) according to the given value of the amplitude vector   ГX



 and by the formula 
(1.38) calculate the value of the nodal vector  вx ; 
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b) by the value of the vector  вx and using the dependence (1.3) calculate the value of 
the nodal vector  вy   (instantaneous model of the process);  
              c) the values of vectors (1.59) and (1.60) are calculated from the values of vectors   
вx  , вy  and expressions for derivatives (1.50) (instant process model); 

d) by the formula of the form (1.57) calculate the values of the vectors   YГV


and  ZГV


;  
e) by the components of the vectors  YГV



and ZГV


  and formula (1.56) calculate the 
value of all elements of the matrices  YГS and  ZГS . 

     Algorithm 1.3 calculates the value of MNDP compared to algorithm 1.2 is implemented 
by a larger computer program, but it is more economical in terms of machine time. Indeed, the 
number of multiplications when performing matrix operations by formula (1.45) is proportional to 

2)21( n+ , while when determining by formula (1.57) the coefficients of the series (1.55) in the 
form of vectors (1.58) the number of multiplications is proportional to n41+ . 
              If only abbreviated amplitude vectors appear in the problem, then the MNDP that 
correspond to them are also abbreviated. The abbreviated MNDP can be obtained from (1.51) 
or (1.56) by extracting in it those rows and columns that correspond to the extracted amplitudes 
of harmonics in the formation of abbreviated amplitude vectors. 

       For the case when only odd harmonics are present in the periodic process and the 
shortened amplitude vectors have the form (1.14), in (1.56) it is necessary to remove rows and 
columns corresponding to the constant component and harmonics of even orders. Then we see 
that the MNDP elements are formed from the amplitudes of only pair harmonics of the Fourier 
series, which represents the dependence (1.53) of the derivative on the angular coordinate. In 
particular, in the case when only harmonics with numbers 1, 3 and 5 are taken into account, the 
MNDP matrix takes the form 
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Гс
YГ Xd
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(1.56а) 

 
 
 
 
 

          
  
        Note some properties of MDGP. 
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         An important property of MDGP is its symmetry. Yes, if the matrix is divided into four blocks 
(in formula (1.56) it is done with double lines) 
 

                                                 ,
2
1

2221

1211

SS
SS

SYГ ⋅=                                         (1.61)                                        

 
that 22S  is, a square symmetric matrix and 21S = TS12 . This property of symmetry should be 
taken into account when calculating the matrix YГS : calculate only the elements of the matrix 
located on its diagonal and above (or below) the diagonal, and other elements - by simply 
assigning the value of the corresponding element from the other half of the matrix. 
           The symmetry of the matrix  22S   is a consequence of the symmetry of the 
interrelationships of infinitesimal increments of harmonics of different orders of dependence (1.7) 
and (1.5). The fact that the elements  νµ cs XY ∂∂   and    µν sc XY ∂∂  of matrices (1.51) are 
the same means that with the same small increments of amplitudes νcX   and  µsX of 
dependence  ][ηxx =    small increments of amplitudes  µsY   and   νcY  of dependence  

][ηyy =   will also be the same. 
 In the general case, all elements of MDGP are nonzero, and then this indicates a 

complete relationship between harmonics of all orders of function and argument. In a special 
case, when the dependences (1.3) and (1.4) are linear functions, then in the matrices YГS  andі  

ZГS  nonzero are only diagonal elements, and they are all the same: the linear dependence of 
the variables  y  and  z  from the variable  x   determines the same - relationship of all harmonics 
of function and argument of the same order. 
               Analyzing the obtained formulas for calculating the values of MDGP elements, it should 
also be noted a very interesting pattern: the elements of the MDGP matrix are determined by 
the coefficients of the series (1.55) only up to the  n2 -th harmonic, and each element is 
determined by one of these coefficients or the sum or difference of only two. 

In the first approximation, MDGP  YГS connects vectors of small increments ГX


∆   

and ГY


∆   vectors of amplitudes  ГX


 and   ГY


: 
 
                                             ГYГГ XSY



∆=∆  .                          (1. 62) 
 

Thus, a small increase in the amplitude of any harmonic of a variable y  (as a function) consists 
of terms, each of which is a contribution of a small increase in the amplitude of the corresponding 
harmonic of the variable   x  (as a argument). Thus, a small increment   1cY∆  (increase in the 
cosine amplitude of the first harmonic of the variable y ) is determined by the formula (let the 
harmonics be taken into account only for the 3rd inclusive): 
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here     
        −= )3,3,2,2,1,1,0(),1( scscscjS jcYГ  the corresponding element of the 

second row of the matrix YГS ;   −=∆ )3,3,2,2,1,1,0( scscscjX j  increments of the 
constant component and the cosine and sine amplitudes of the harmonics.of the dependence 

][ηxx = .  
By formula (1.63), the first term of the increment 1cY∆ ,formed by the increment of the 

constant component of the dependence   ][ηxx =  is determined only by the cosine amplitude 
of the first harmonic of the dependence (1.55). The second term, formed by the increase in the 
cosine amplitude of the first harmonic of dependence ][ηxx = , is determined only by the 
constant component and the cosine amplitude of the second harmonic of dependence (1.55).  
The third term, formed by the increase of the sinusoidal amplitude of the first harmonic of 
dependence  ][ηxx = , is determined only by the sinusoidal amplitude of the second harmonic 
of dependence (1.55). The fourth term, formed by the increase in the cosine amplitude of the 
second harmonic of the dependence ][ηxx = , is determined only by the cosine amplitudes of 
the first and third harmonics of the dependence (1.55). The fifth term, which is formed by the 
increase of the sinusoidal amplitude of the second harmonic of dependence ][ηxx = , is 
determined only by the sinusoidal amplitudes of the first and third harmonics of dependence 
(1.55), etc. 
          Therefore, in the terms of formula (1.63) small increments of cosine amplitudes ofof the  
harmonics dependence  ][ηxx =  are multiplied only by the cosine amplitude of the harmonic 
of the dependence (1.55)  with the closest order on the right or by the sum of cosine amplitudes 
of dependence harmonics (1.55) with the nearest orders of magnitude harmonics of dependence 

][ηxx = . The small increments of the sine amplitudes of the harmonics of the dependence 
][ηxx =   are multiplied only by the sine amplitude of the dependence harmonic (1.55) with 

the closest order on the right or by the sum of the sine amplitudes of the harmonics of the 
dependence ][ηxx =  with the nearest orders on the left and right. 

This observation of the relationship between the increments of the amplitudes of the 
harmonics of variables x   and  y  (a similar relationship is between the increments of the 
amplitudes of the harmonics of variables  x   and  z ) is new, it is worth noting experts in the 
design of nonlinear devices the relationship between the desired harmonics of the variable-
argument and the variable-function. 
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1.5. Periodic solutions of nonlinear systems of differential equations 

 
          In the previous sections, we considered the essence of numerical polyharmonic modeling 
of forced oscillations on a simple example - consideration of the algorithm for finding the periodic 
solution of a nonlinear scalar differential equation. Now we can proceed to a more complex task 
- to consider algorithms for finding periodic solutions of nonlinear systems of differential 
equations. 
 

 
1.5.1. The notation form of a nonlinear system of differential equations 
 
As noted in the Introduction, the oscillations described by nonlinear systems of 

differential equations can be forced, parametric or auto-oscillations. To ensure the same 
approach to the numerical simulation of all these types of oscillations using unified software, the 
system of differential equations describing the oscillations will be reduced to the form 

                                     

                             0=−+ ez
dt

yd 



,                                                     (1.64) 

 
or 

                             0=−+ ez
dt

xd 



,                                                    (1.65) 

 
or 

                           0=−+ ez
dt

ydB 



,                                                  (1.66) 

 
or 

                           0=−+ ez
dt

xdB 



 ,                                                 (1.67) 

 

here            
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
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1111

;;; ====            (1.68 а, b,  c, d) 

 
 
- matrix-columns (vectors-columns), each of which has   k   elements, and the vector   e   is a 
vector of external forcing forces; 
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kkjkk

kijii

kj

bbb

bbb

bbb

B











1

1

1111

=                              (1.69) 

 
- constant square matrix of the  k -th  order. 
            Each of the vector differential equations in the notation forms (1.64) - (1.67) is a system  
k   scalar differential equations of the first order. 
             If there is a periodic dependence on time 

 
                             ][][ Ttxtxx +==  ,                                       (1.70) 
 

that satisfies the differential equation in one of the notation forms (1.64) - (1.67), it is its desired 
periodic solution. 
            In the notation forms (1.64) and (1.66) under the sign of the derivative there is not a 
vector  x   whose periodic dependence (1.70) is the desired periodic solution of the vector 
differential equation, but some vector  y   which is a nonlinear function of the vector  x  

 
                                                            ][xyy  =                                              (1.71) 

or, in expanded form, 

                                       

].,...,,...,[

];,...,,...,[

1

111

kjkk

kj

xxxyy

xxxyy

=

=


                                    (1.71а) 

 
            If in the equation in one of the notation forms (1.64) - (1.67) the vector of external 
forcing forces  e    is nonzero and is a  −T periodic function of time 

 
                              ][][ Ttetee +==  ,                                         (1.72) 
 

 
and the vector   z   is some nonlinear function of the vector  x  
 
                                                             ][xzz  =                                                    (1.73) 
or ot the vectors x   and  y  

                                       ],[ yxzz  = ,                                               (1.74) 
then the equation describes the forced oscillations. 
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           The vector functional dependence (1.73), if written in expanded form, has the form 

 

                          
.],...,,...,[

;],...,,...,[

1

111

kjkk

kj

xxxzz

xxxzz

=

=


                                            (1.73а) 

 
and dependence  (1.74) –  the form 
 

                          

.],...,,...,,,...,,...,[

;],...,,...,,,...,,...,[

11

1111

kjkjkk

kjkj

yyyxxxzz

yyyxxxzz

=

=


               (1.74а) 

             If in the equation of one of the notation forms (1.64) - (1.67) the vector  e   is zero and 
among the arguments of the vector   z  is time t  

                                                          ],[ txzz  =                                                 (1.75) 

or 
                                                         ],,[ tyxzz  = ,                                            (1.76) 

then such an equation can describe parametric oscillations. 
            The expanded form of functional dependence (1.75) is as follows 

 

                          
],,...,,...,[

;],,...,,...,[

1

111

txxxzz

txxxzz

kjkk

kj

=

=


                                          (1.75а) 

 
and the expanded form of dependence (1.76) is as follows 
 

                           
.],,...,,...,,,...,,...,[

;],,...,,...,,,...,,...,[

11

1111

tyyyxxxzz

tyyyxxxzz

kjkjkk

kjkj

=

=


        (1.76а) 

 
             Finally, if in the equation of one of the notation forms (1.64) - (1.67) the vector  e  is 
zero, and the vector   z   among its arguments does not contain time, ie is a function of only the 
vector   x  as specified in (1.73), or vectors  x  and y  as specified in (1.74), such an equation 
can describe self-oscillation. 
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                   1.5.2. Harmonic algebraization of a vector differential equation 
 

            The first step in determining the periodic solution of a vector differential equation in one 
of the forms of notation (1.64) - (1.67) is its harmonic algebraization - the notation of an algebraic 
nonlinear vector equation, which is a harmonic reflection of the vector differential equation. 
            Performing harmonic algebraization of a scalar differential equation is described in 
Section 1.1. Harmonic algebraization of a vector differential equation, or a system of first-order 
differential equations, is performed similarly. The periodic dependences on the time of the 
variables  kxx ,...,1  (vector x ), kyy ,...,1  (vector y ),  kzz ,...,1   (vector z ), kee ,...,1  
(vector) are approximated by trigonometric series of the form (1.8) and we substitute these 
approximations into a system of differential equations. After performing the differentiation 
operation, this system is transformed into a system of algebraic equations, the amplitudes of the 
harmonics of the trigonometric series of which are unknown. 
            Such algebraization, by analogy with the formal rule set forth in Section 1.1, can be 
performed as follows: each vector of variables in the vector differential equation must be 
replaced by an amplitude vector and the differentiation operation must be replaced by 
multiplication on the left by the circular frequency of the first harmonic and the differentiation 
matrix. 
            As a result of harmonic algebraization of the vector differential equation (1.64) we obtain 
the vector algebraic equation 
 

                            ,0=−+ ∗∗∗∗
ГГГ EZYD


ω                                            (1.77) 
here 
                                      ;),...,,...,( DDDdiagD =∗                                       (1.78) 
                                      ;),...,,...,( 1 ГkГjГГ YYYcolonY



=∗                           (1.79) 

                          ;),...,,...,( 1 ГkГjГГ ZZZcolonZ


=∗                        (1.80) 

                          .),...,,...,( 1 ГkГjГГ EEEcolonE


=∗                        (1.81) 

             The root of the vector algebraic equation (1.77) is a vector 
                   
                      .),...,,...,( 1 ГkГjГГ XXXcolonX



=∗                        (1.82) 
 

            Since in the differential equations of the form (1.64) - (1.67) the variables are -component 
vectors of the form (1.68), each of the vectors (1.79) - (1.82) consists of components, each of 
which is a vector of the amplitudes of the form. (1.13). Let us call the vectors (1.79) - (1.82) 
composite vectors of amplitudes.  

The formation of composite amplitude vectors from simple amplitude vectors of the form 
(1.13) by the method of their sequential recording one after another is called a sequential method 
of forming a composite amplitude vector. With this method of forming composite amplitude 
vectors, the matrix (1.78) is block-diagonal, it has the same blocks diagonally - matrices of form 
differentiation (1.16) or (1.17). The matrix (1.78) is called a composite differentiation matrix. 
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            The result of harmonic algebraization of the differential equation (1.65) is an algebraic 
equation 

                             0=−+ ∗∗∗∗
ГГГ EZXD


ω  .                                     (1.83) 
 

          The result of harmonic algebraization of differential equations (1.66) and (1.67) is equation 
 

                                              0* =−+ ∗∗∗∗
ГГГГ EZYDB


ω                                  (1.84) 
and 

                                   ,0* =−+ ∗∗∗∗
ГГГГ EZXDB


ω                               (1.85) 
here 
 

                         

ГkkГjkГk

ГkiГjiГi

ГkГjГ

Г

BBB

BBB

BBB

B











1

1

1111

* =                                 (1.86) 

 
- constant square block matrix of order gkN . Its components are blocks - diagonal matrices of 

order    gN   and form 
 

                               )...,,,( jijijiГji bbbdiagB = ,                         (1.87) 

having their elements corresponding to the elements of the matrix (1.69). 
            Records of nonlinear vector algebraic equations (1.77), (1.83) - (1.85) are generalized 
by one record 

                                              .0][ =∗∗
ГГ XU


                                           (1.88) 
 

            In this section and in all subsequent sections, the presence in the names of the amplitude 
vectors or the corresponding matrices of the upper right index ""∗  (asterisk) carries the 
information that these amplitude vectors or matrices belong to the vector algebraic equation 
obtained by harmonic algebraization of the system of differential equations.  
           The harmonic algebraization of systems of differential equations described in this section 
does not have to be performed by the user of the method when modeling oscillations, if, as will 
be shown below: 
     1) the software described in Chapter 2 is used; 
     2) the system of differential equations is reduced to one of the forms (1.64) - (1.67). 
In other cases and if a detailed analysis of the software components of the software presented 
in Chapter 2 is necessary, the user may need to perform the procedure of harmonic 
algebraization of the considered nonlinear system of differential equations. 
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                            1.5.3. Determination of the periodic solution 
                            of a nonlinear system of differential equations 
 
            If the vector differential equation describes forced or parametric oscillations, then the 
circular frequency of the fundamental harmonic of its periodic solution is known in advance. In 
the case of self-oscillations, it is unknown and is determined together with the amplitudes of the 
harmonics. In order to unify the solution search algorithm so that it is suitable for both forced or 
parametric oscillations and for self-oscillations, we will consider the value of the variable and 
introduce a vector 

                                              
ω

∗
∗ = ГXX





  .                                           (1.89)   

We consider it as the root of some nonlinear vector finite equation 
 
                                                              0][ =∗∗ XU



ω .                                      (1.90) 
 

Since the number of unknowns is one more than the number of unknowns of equation (1.88), 
another scalar equation must be added to equation (1.88) when it is formed. 
            For the case when the last component of the vector (1.89) is known in advance and equal 
to the given value  зω  (forced or parametric oscillations), this additional equation can be written 
as 

                                                     0=− зωω                                           (1.91) 

or, in matrix form, 
                                                             0, =−∗

зпв XC ω


,                               (1.91а) 
here 
                                                     1,0,...,0,0, =пвC                                     (1.92) 
 
- matrix-row size 1+gkN , formed of zeros and one unit, which occupies the last position. 
           If the value    ω   is wanted (self-oscillation), then this additional equation can be an 
equation 
                                                                0=∗XCа



,                                           (1.93) 
here 
                                                          0,...,0,0,1,0=аC                                 (1.94) 
 
- matrix-row   1+gkN   size, formed of zeros and one unit, which occupies the second position. 
The appearance of this matrix is due to the following considerations. 
             Nonlinear autonomous systems of differential equations describing self-oscillations are 
nonisochronous, ie the frequency of self-oscillations is not given, but is determined by the 
internal parameters of the system, which depend on the amplitudes of the harmonics of the 
regime quantities of the oscillatory process. Since such oscillations are not tied to any external 
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forcing forces, the time coordinate of the beginning of the period of oscillations can be chosen 
arbitrarily. Thus, for the beginning of the period it is possible to take such value of time at which 
one of harmonics of one of variables of process passes through zero, and for this purpose it is 
necessary to accept cosine amplitude of this harmonic equal to zero. The fact that in the matrix-
row (1.92) the unit occupies the second position means that equation (1.93) is set equal to zero 
cosine component of the amplitude of the 1st harmonic 11cX  of dependence  ][11 txx = , in 
the case when constant components and harmonics of all orders are taken into account, and 
sinusoidal component of amplitude 1st harmonic  11sX , if only harmonics of odd orders are 
taken into account. 

Thus, the left-hand side of equation (1.90) in the simulation of forced or parametric 
nonlinear oscillations has the form 

                                     
зпв

ГГ

XC
XU

XU
ωω −

=
∗

∗∗
∗∗







.

][
][                                 (1.95) 

and in the simulation of self-oscillations - view 

                                                 
∗

∗∗
∗∗ =

XC
XU

XU
а

ГГ




 ][
][ω .                                      (1.96) 

 
            The search for the periodic solution of a nonlinear vector differential equation in one of 
the notation forms (1.64) - (1.67) is reduced to determining the root of the nonlinear vector finite 
equation (1.90). First, we will look for an approximate value of this root and then refine it. 
            To obtain the approximate value of the root of equation (1.90), we use the method of 
continuation by parameter in the following modification [48]. We give an arbitrary initial value  

∗∗ = 0XX


  and calculate the value of the left part of equation (1.90), ie - the discrepancy 
(residual) vector 

                                            ][ 00
∗∗∗∗ == XXUH


ω .                                (1.97) 

This discrepancy  vector will have numerical zero value only if   ∗∗ = 0XX


  is the root of the 
equation (1.90). 

We assume that the algorithm for calculating the values of the composite amplitude 
vectors  ∗

ГY


 and   ∗
ГZ


 required for the calculation   ][ ∗∗
ГГ XU


, ie the left side of the equation 
in one of the forms of notation (1.77), (1.83) - (1.85), the value of the composite amplitude vector  

∗
ГX


, ie the calculation of harmonic characteristics 
 

                                ][];[ ∗∗∗∗∗∗ == ГГГГГГ XZZXYY


 ,                       (1.98) 
 

is known (it will be discussed below). Using the discrepancy vector  ∗
0H


  , we create a new 
equation 
 
                                                0)1(][ 0 =−− ∗∗∗ HhXU



ω ,                                (1.99) 
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in which h   - a scalar parameter. When   0=h   the solution of equation (1.99) is known, this 
is a given value ∗∗ = 0XX



, and when   1=h equation (1.99) becomes identical to equation 
(1.90) and, therefore, their solutions coincide. At continuous change of parameter   h   there is 
a dependence 

                                             ][hXX ∗∗ =


,                                         (1.100) 
 
which when  0=h   passes through  ∗∗ = 0XX



 and when  1=h   passes through the desired 
root of equation (1.90). The dependence (1,100) is integral with respect to some vector 
differential equation, which can be obtained by differentiation by the parameter   h   of equation 
(1.99). Let us perform this differentiation, taking into account that in this equation the vector     

∗
0H


  is a constant: 

                                     00

*

*0 =+=+ ∗
∗

∗
∗

H
hd

Xd
Xd
UdH

hd
Ud 











ωω                      (1.101) 

or 

                                                 ∗∗ −= 0

*

H
hd

XdW




,                                            (1.102) 

 
here   ∗W  - Jacobi matrix of equation (1.90). This matrix has the following structure – 
  
 

                                         
C

W

WWГ

=∗

∗∗
ω

     ,                                        (1.103) 

 
here    C  -  matrix-string of size  1+gkN , in the case of modeling of forced or parametric 

quantities it is a matrix   пвC .  of the form (1.92) and in the case of modeling of self-generation 

- a matrix   аС  of the form (1.94); 
                                                         ∗

∗
∗

∂
∂

=
Г

Г
Г X

UW 



                                               (1.104) 

- square size  gg kNkN ×  matrix; 

                                                          
ωω ∂

∂
=

∗
∗ ГUW



                                              (1.105) 

- matrix-column size  gkN . 
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            Now we will reveal the content of matrices  ∗
ГW   and  ∗

ωW . 

            If equation (1.88) has the form (1.77), then, given that the vector  ∗
ГE


 is invariant, we 

obtain 

                 ∗∗∗∗∗∗∗
∗

∗ +=−+= ZГYГГГГ
Г

Г SSDEZYD
Xd
dW ωω )(



  ,              (1.106) 

here                

                                       ∗

∗
∗

∗

∗
∗ ==

Г

Г
ZГ

Г

Г
YГ Xd

ZdS
Xd
YdS 







;                                     (1.107) 

 
- matrices, which are the differential parameters of the harmonic characteristics (1.98); 
 
 

                             ∗∗∗∗∗∗∗ =−+= ГГГГ YDEZYD
d
dW



)(ω
ωω  .                 (1.108) 

 
              If equation (1.88) has the form (1.83), then 

 
                          ∗∗∗∗∗∗ =+= ГZГГ XDWSDW



ωω ; .                       (1.109) 
 
If equation (1.88) has the form (1.84), then  
 
                ∗∗∗∗∗∗∗∗∗ =+= ГГZГYГГГ YDBWSSDBW



ωω ;  .               (1.110) 
 
If equation (1.88) has the form (1.85), then  
 
                        . ∗∗∗∗∗∗∗∗ =+= ГГZГГГ XDBWSDBW



ωω ; .           (1.111) 
 

              We integrate the differential equation (1.102) by one of the numerical methods from the 
value   0=h  and initial conditions   ∗∗ = 0XX



  to 1=h . Obtained at     1=h   the value  
∗X


  we accept as a “good” initial approximation to refine the solution of equation (1.90) by the 
iterative Newton method according to the formulas 

     

                              
,

;

)()()1(

)()()(

∗∗∗
+

∗∗∗

∆−=

=∆

lll

lll

XXX

HXW




                                       (1.112 а,b) 

 
here  l  - iteration number; ∗

)(lH


-  discrepancy of equation (1.90) at  ∗∗ = )(lXX


. 
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          Depending on the form of equation (1.88): (1.77), (1.83), (1.84) or (1.85), the elements    

∗
ГW   and  ∗

ωW  of Jacobi matrices    ∗W  are calculated by the formulas, respectively (1.106), 
(1.108), (1.109), ( 1.110) and (1.111), and the residual vector - respectively by formulas 

     
 

                       *

**
)(

*
)(

*
*

)( XC
EZYDH ГlГlГ

l 



 −+
=
ω

 ;                           (1.113а) 

 
                                                    

                                     *

**
)(

*
)(

*
*

)( XC
EZXDH ГlГlГ

l 



 −+
=
ω

 ;                         (1.113b) 

 
 

                                     *

**
)(

*
)(

**
*

)( XC
EZYDBH ГlГlГГ

l 



 −+
=
ω

 ;                   (1.113c)  

     
 

                                  *

**
)(

*
)(

**
*

)( XC
EZXDBH ГlГlГГ

l 



 −+
=
ω

.                    (1.113d) 

        
                                                            
           Note that in the case of calculating the forced oscillations and if the solution of equation 
(1.90) set the initial values   0* =ГX



   and     зωω =  (while the amplitude vectors *
ГY


  and    
*
ГZ


 will be zero and the vector *X


 will have a value  ),0( **
зcolonX ω



= , where  *0


- 
zero compound vector of amplitudes), the discrepancy vector will take value    

)0,( **
0 ГEcolonH



−=   and equation (1.102) - form 
 

                                        0

**
* ГE

dh
XdW



=  .                              (1.102а) 

 
 
In this case, the dependence (1.100) will be a  h -characteristic (see Section 1.2), which at   

0=h  passes through the value of the vector  ),0( **
зcolonX ω



=   and when  1=h  
through the root of equation (1.90). 
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                   1.5.4. Harmonic characteristics and their differential parameters       
           To calculate by formulas (1.113) the values of the residual vectors when refining the 
solutions of equation (1.88) by Newton's method, as well as when calculating the value of the 
residual vector (1.97) by numerically integrating the differential equation (1.102) requires the 
value of the vector   ∗

ГX


  calculate the values of vectors   ∗
ГY


  and   ∗
ГZ


. Vectors ∗
ГX


, ∗
ГY


  
and   ∗

ГZ


 and connect harmonic characteristics (1.98). Their calculation is performed in the 
sequence specified by the following formulas: 
                  
               ;],[;][; ∗∗∗∗∗∗∗∗∗∗ === вввввввГв yxzzxyyXFx 





        (1.114 а, б, в) 
 
                                 ,; ∗∗∗∗∗∗ == вГвГ zGZyGY 







                                     (1.115 а, б) 
 
here    ∗∗ FG , -  composite matrices of direct and inverse harmonic transformations; 
              ∗∗∗

ввв zyx  ,, - vectors formed from the values of the components of the functions 
][,][,][ ηηη zzyyxx  ===  in the grid nodes in the period (and if only odd harmonics 

are taken into account - then in the half-period), ie from the values of the components of the 
vectors (1.68). 

 

            Let's call vectors   ∗∗∗
ввв zyx  ,,  composite nodal vectors. They can be formed from the 

values of the components of vectors (1.68) in different ways. A possible method of forming 
composite nodal vectors is a sequential method: 

 

                        

.,,
;),...,,(

;),...,,...,(

)()2()1(

1

zyxa
aaacolona
aaacolona

mjjjjв

kвjввв

=

=

=∗





                 (1.116)  

 

In this way, the composite nodal vector is formed from simple nodal vectors of the form (1.37), 

which belong to the 1st, 2nd, ..., k -th component of the vector a , respectively. In this formation 

of composite nodal vectors, the matrices of harmonic transformations ∗F  and  ∗G  used in 
formulas (1.114) and (1.115) have the form   
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                                                  ;),...,,...,( FFFdiagF =∗                               (1.117а) 

                                      .),...,,...,( GGGdiagG =∗                                 (1.117b)    
 

The matrix  ∗F has   k   the same blocks as the form matrix  F (1.39) or (1.44), and the matrix   
∗G   has  k  the same blocks as the matrix G   of the form (1.42), as    shown in Figures 1.2 and 

1.3. 

              The second possible way of forming composite nodal vectors is a parallel method: 
 

    
.,,),...,,,,...
...,...,,,,...,,,(

)()(2)(1

)2()2(2)2(1)1()1(2)1(1

zyxaaaa
aaaaaacolona

mkmm

kkв

=

=∗

        (1.118) 

 
In this formation of the composite nodal vector as its components, the values of the 1st, 2nd, ..., 
k -th component of the vector   a   in the first node of the period (or half-period, if only odd 
harmonics are taken into account) follow, then in the same order the values these components 
in the second, third and all other nodes up to the last -  m -th node. As practice has shown, in 
the software implementation of algorithms of the differential harmonic method, a parallel method 
is a more expedient way of forming composite nodal vectors. When using it, it is a bit easier to 
programmatically implement instant (or half-period) process models. 

 
            For a parallel method of forming composite nodal vectors, the matrix has the form (see 
Fig. 1.4) 
                                          ,),...,...,,( 1 mFFFcolonF χ=∗                    (1.119) 

Ng

F

F

F

m

1

2

k

Рис. 1.2. Структура   матриці
вигляду (1.117а)

                                   Ng

m

G

G

G

1

2

k

Рис. 1.3. Структура матриці  вигляду  (1.117б)Fig. 1.3  The structure of the matrix of the form 
(1.117b) 

 

Fig. 1.2  The structure of the 
matrix of the form (1.117a) 
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here  χF  – block-diagonal matrix of dimensions  gkNk ×   that has  k    the same blocks, 
each of which is a matrix-string of the form 
 
                  ,sincos...2sin2cossincos1 )()()()()()( χχχχχχ ηηηηηη nn  
 
if in each variable the constant component and harmonics of all orders, or a kind are considered 
 
                     ,sincos...3sin3cossincos )()()()()()( χχχχχχ ηηηηηη nn  
 
 
if only harmonics of odd orders are taken into 
account. 
The matrix   ∗G  for the case when the composite 
node vectors have the form (1.118), is calculated 
by the formula 

 

            ,2 ∗∗∗∗ Θ= ηξ
TF

m
G         (1.120) 

 
where ∗Θ  – block-diagonal matrix composed of   
k   identical blocks, each of which is a matrix 
(1.43); TF ∗ - matrix transposed on the tray to the 
matrix (1.119a); 
 

            ∗
ηξ  - diagonal matrix of dimension  mk , which is single, if numerical methods based 

on quadrature formulas of rectangles or trapezoids are used to calculate certain integrals, and 
which when using Simpson's formula has the form 
 

                ,,...)
3
4...,,

3
4,

3
4,

3
2...,,

3
2,

3
2,

3
4...,,

3
4,

3
4,

3
2...,,

3
2,

3
2(diag=∗

ηξ  

 
here diagonally groups with the same numbers have  gN   elements. 
             The algorithm for calculating harmonic characteristics (1.98) can be expressed by the 
following sequence of directives (algorithm 1.4): 
             a) for a given value  ∗

ГX


 according to the formula (1.114a) to calculate the value of 
the composite nodal vector  ∗

вx ; 

             b) by the values of the components of the vector   ∗
вx   using the dependences 

                                      Ng
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m

1 2 k

Рис. 1.4. Структура матриці вигляду
(1.119).

Fig. 1.4. Structure of the  matrix of 
the form (1.119) 
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 (1.71) or (1.74) calculate the values of the components of the composite nodal vectors  ∗
вy  

and ∗
вz


 (instantaneous period or half-period process model); 

             c) by formulas (1.115a, b) calculate the values of vectors  ∗
ГY


 and  ∗
ГZ


. 
 
             When calculating the values of the main block   ∗

ГW  of the Jacobi matrix by formulas 
(1.106), (1.109), (1.110) or (1.111) it is necessary to calculate the values of matrices (1.107) 
according to the given value of the vector ∗

ГX


  . These matrices consist of    2k  blocks, each 
of which is a square matrix of dimension gN , and have the form: 
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By definition, they are complete derivatives of composite amplitude vectors  ∗

ГY


  and    ∗
ГZ


 by 
the composite amplitude vector ∗

ГX


, ie, differential parameters of harmonic characteristics 
(1.98), so we call them composite matrices of differential harmonic parameters. 
            By analogy with formula (1.45), the values of matrices (1.121) and (1.122) can be 
calculated by formulas 



49 
 

                         
                       ,; ∗∗∗∗∗∗∗∗ == FSGSFSGS zвZГyвYГ                         (1.123) 
 

here    ∗∗
zвyв SS ,  –  composite matrices of differential harmonic parameters. 

If the composite nodal vectors are formed by rule (1.116), then in (1.123) the matrices   ∗F   and  
∗G   have the form (1.117), and the composite matrices of nodal differential parameters  

∗∗
zвyв SS ,   consist of   2k   blocks and have the form 
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and their internal blocks are diagonal matrices of the following form: 
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                (1.125 а,б) 

 

It should be borne in mind that in the general case, the element  
j

i

dx
dz

 of the matrix (1.125b) is 

determined by the formula 
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           If the composite nodal vectors are formed by the rule (1.118), then in (1.123) the 
matrices ∗F   and   ∗G  have the form (1.119) and (1.120), and the matrices  ∗∗

zвyв SS ,  are 
block-diagonal and contain m   diagonal blocks - dimensional   k   matrices (see Fig. 1.5). : 

 

           ;),...,,( )()2()1( myв xd
yd

xd
yd

xd
yddiagS













=∗                (1.127а) 

 

           .),...,,( )()2()1( mzв xd
zd

xd
zd

xd
zddiagS













=∗               (1.127b) 

 
In (1.127b) the diagonal block - the matrix  xdzd 

  - is determined by the formula 
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A view of a composite matrix of node parameters 

(1.127), in which the relationships between variables in each 
of the nodes in the period (or half-period) are compactly 
reflected by its diagonal block (in matrices of the form 
(1.124), the structure of which corresponds to a sequential 
method of forming composite node vectors , this connection 
is “smeared” on all its blocks) and makes a parallel method 
of forming composite nodal vectors of the form (1.118) more 
attractive. This method is chosen when developing the 
appropriate procedures for DGM software outlined in 
Chapter 2. 
                The values of the blocks of matrices (1.121) and 
(1.122) can be calculated by algorithms 1.2 or 1.3. If 
algorithm 1.2 is used, then the calculation of the value of the  ij -th block of the matrix ∗

YГS  is 
performed by the formula 
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Рис. 1.5. Структура
матриці вигляду (1.127)

Fig. 1.5. Structure of the 
matrix of the form (1.127) 
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                  If we use algorithm 1.3, then the calculation of the values of the blocks of matrices 
(1.121) and (1.122) is carried out by formulas (1.56). In this case, to calculate the values of the 
blocks of these matrices, it is necessary to find by formula (1.57) the coefficients of 
decompositions in the Fourier series to the  n2 -th harmonic of dependences, the numerical 
values of which in the  m  grid nodes are given by diagonal elements of matrices (1.125). 

Algorithm for calculating the value of the composite vector of amplitudes  ∗
ГX


 of the 
value of the composite matrix of differential harmonic parameters (1.121) or (1.122) for the case 
when the values of its internal blocks are calculated by formula (1.56), expressed by the 
sequence of such directives (algorithm 1.5): 

 

           a) for a given value of the vector *
ГX


 according to the directives a) and b) of the 

algorithm 1.4 calculate the values of compound node vectors  ∗
вx   and   ∗

вy ;  
b) from dependencies 
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             (1.130) 

 
obtained by analytical or numerical differentiation of functions (1.71) and  (1.73) or (1.74) and 
which are an integral part of the instantaneous period (half-period) model process, calculate the 
value of the composite matrix of nodal differential parameters ∗

yвS   (or ∗
zвS ) of the form (1.124) 

or (1.127); 
c) from the elements of the inner blocks of the matrix  ∗

yвS   (or ∗
zвS ) form (1.124), which 

are diagonal matrices, or from the elements of the diagonal blocks of this matrix, if it has the 
form (1.127), to form vectors of forms (1.59) and (1.60);  

d) using the directives d) and e) of algorithm 1.3 by formula (1.57) to calculate the values 
of vectors   YГV



  and    ZГV


 the form (1.58) for all values of indices i    and   j ;  
e) by the values of vectors  YГV



  and    ZГV


 form (1.58) for all values of indices and by 
formula (1.56) to form the values of all elements of all internal blocks of the composite matrix of 
differential harmonic parameters ∗

YГS  (or ∗
ZГS ). 

 
                          
                            1.5.5. Algorithms of search of periodic solution 

 
           Consider the algorithm for finding the solution of the equation of the form (1.90). Its first 
component is the algorithm for numerical integration of the vector differential equation (1.102) 
under the initial conditions *

0
* XX



=    from  0=h  to  1=h .  
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The sequence of operations at each step (substep) in the numerical integration of the 
differential equation (1.102) to obtain an approximate solution of equation (1.90) is called 
algorithm 1.6. We describe it with a sequence of the following directives: 

 

           a) for the value of the vector *X


 known from the previous step (a, therefore, and  ∗
ГX


) 

according to the directives a) and b) of algorithm 1.4 calculate the values of the vectors ∗
вx  and  

∗
вy ;  

b) according to algorithm 1.5 calculate the values of the composite matrices of differential 
harmonic parameters ∗

YГS   and   ∗
ZГS ; 

            c) by formula (1.103) calculate the value of the matrix ∗W ; 
            d) by solving (1.102) as a system of linear equations relative to derivatives determine 
the value of the vector dhXd * ; 

e) according to the formula corresponding to the selected method of numerical integration 
of the vector differential equation, calculate the value of the increment  *X



∆   and the new value 
(at the end of the step) of the vector *X



. 
We refine the approximate value of the solution of equation (1.90) obtained by algorithm 

1.6 by the iterative method of Newton according to scheme (1.112). The sequence of operations 
on one iteration is as follows (algorithm 1.7): 
           a) for the value of the vector  *X



known from the previous iteration (and, therefore, 
∗
ГX


) by algorithm 1.4 to calculate the values of the vectors ∗
ГY


  and   ∗
ГZ


; 
           b) by formula (1.113) calculate the value of the discrepancy vector  ∗H



; 
           c) according to the directives a) - d) of algorithm 1.6 to calculate the value of the matrix 

∗W ; 
           d) by solving (1.112a) as a system of linear equations to calculate the value of the 
correction vector  ∗∆X



 and by formula (1.112b) - the improved value of the vector  ∗X


. 
The algorithm for calculating the instantaneous (for given time points in nodes in the 

period or half-period) values of variables y , z  and matrices
xd
yd




,  
xd
zd




, according to the 

instantaneous values of the vector  x  in these nodes implements an instantaneous 
mathematical model in the period or half-period of the object - instantaneous model. Directive b) 
of algorithm 1.4 and directive b) of algorithm 1.5 (section 1.5.4) implement the appeal to this 
model to calculate the values of components of nodal vectors  ∗∗

вв zy  ,   and matrices of nodal 
differential parameters  ∗∗

zвyв SS ,    in time nodes of the grid on the period (or half-period) by the 

value of the nodal vector  ∗
вx . 

           The algorithm for calculating the values of the vectors of amplitudes ∗
ГY


  and   ∗
ГZ


and 

and matrices  ∗
YГS  and  ∗

ZГS by  the value of the amplitude vector ∗
ГX


 is a mathematical model 
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of the object under study for the amplitudes of the harmonics of its mode coordinates or, in short, 
its harmonic model. It is accessed by the algorithms 1.6 and 1.7 described above. 
           In the computer implementation of the instantaneous period (or half-period) model of the 
process, which calculates the values of the components of vectors  zy  ,  and matrices  

xdzdxdyd  ,  by the value of the vector  x   in all nodes of the period (half-period), the 
following should be kept in mind. For most types of nonlinearities that an oscillatory system can 
have, the order of bypassing the nodes does not matter when performing these calculations, 
and the nodes of the period (half-period) are bypassed  in the order from  the first to  the last. 
However, there are types of nonlinearities when it is necessary to start traversing nodes from 
some internal node to the last, and then - from the first to this internal. Examples from the field 
of nonlinear electrical engineering can be an instantaneous model in the period of a controlled 
valve (thyristor) or nonlinear inductance with the characteristic of magnetization of the hysteresis 
form. Problems with such nonlinearities are discussed later in Chapters 3 and 4. 
 

            1.5.6.  Investigation of the stability of nonlinear oscillations 
 

          The oscillation of a physical system is considered stable if, as a result of any single 
accidental perturbation, it recovers, ie returns to its previous state. A study of the stability of a 
nonlinear oscillation from a mathematical point of view is a study of the stability of the periodic 
solution of a nonlinear vector differential equation (ie, a system of first-order nonlinear differential 
equations) that describes this oscillation. To do this, the nonlinear vector differential equation is 
linearized in the region of the periodic solution, and for the thus obtained linear differential 
equation, the corresponding characteristic equation is written. The roots of the latter contain 
information about the studied stability [2, 7, 8, 30, 37, 48, 52, 56, 60, 64, 66]. 

By calculating nonlinear oscillations by the differential harmonic method (as well as by the 
harmonic balance method), the periodic solutions of the differential equations are approximated 
by Fourier series - the sums of harmonics of different frequencies multiples of the fundamental 
harmonic frequency. Due to the random perturbation of the oscillatory process, the amplitudes 
of the harmonics of these approximations become variable over time. In the case of stability of 
the periodic process after a certain time after perturbation, the values of the amplitudes of the 
harmonics should be established and become as they were before the perturbation. 

The operation of harmonic algebraization of differential equations (see sections 1.1 and 
1.5.2) is performed with the assumption that the coefficients of the Fourier series (harmonic 
amplitudes), which approximate the time dependences of the variables, are constant. Therefore, 
after differentiation of these approximations during algebraization, the derivatives do not appear 
in the obtained expressions. If we consider the coefficients of the Fourier series to be variable, 
then due to the differentiation of expression (1.8) we obtain 

 

                              
).cossin

sincos(
1

0

tAt
dt

dA

tAt
dt

dA
dt

dA
dt
da

s
s

n
c

c

νωνωνω

νωνωνω

ν
ν

ν
ν

ν

++

+−+= ∑
=     (1.131) 

 



54 
 

 
Then the differential equation (1.65) is transformed not into a finite equation (1.83), but into a 
new differential equation 
 

                                                      ∗∗∗
∗

=++ ГГГ
Г EZXD

dt
Xd 



ω .                             (1.132) 

 
          In the steady-state periodic regime, the amplitudes of the harmonics are constant, then 

0=∗ dtXd Г



  and equation (1.132) is reduced to equation (1.83).  
In order to study the stability of nonlinear oscillation - the steady-state periodic regime as 

the solution of equation (1.132) - it is necessary to linearize this equation at the solution point. 
To do this, replace the variable ∗

ГX


 with a small increment  ∗∆ ГX


 and equate the full 
differentials of the left and right parts [64]: 
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Xd 








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Given the notation (1.107), this linearized equation takes the form 
 

         0)( =∆++
∆ ∗∗∗

∗

ГZГ
Г XSD

dt
Xd 



ω   .                      (1.133а) 

The characteristic equation corresponding to it can be obtained by the formula [48] 
                                     
                              0)(det =++ ∗∗

ZГSDEp ω


,                          (1.134) 
 

here   p - variable of the characteristic equation and E


-- a unit matrix of the same size as the 

matrix  ∗D . 
 

          If the solvable differential equation has the form (1.64), then the linearized equation for 
small increments of the components of the amplitude vectors is as follows 

                                       0)( =∆++
∆ ∗∗∗∗

∗
∗

ГZГYГ
Г

YГ XSSD
dt
XdS





ω              (1.135) 

 
and its characteristic equation can be obtained by the formula 
 
                                               0)(det =++ ∗∗∗∗

ZГYГYГ SSDpS ω .                      (1.136) 
 

          By revealing the determinants in formulas (1.134) or (1.136) the characteristic equations 
are reduced to the traditional form of the algebraic equation 
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and expressions for its coefficients  .,...,, 10 naaa are obtained. 
              As is known [2, 7, 8, 30, 48, 52, 56], the necessary condition for the asymptotic stability 
of the solution is satisfied when all the coefficients of the characteristic equation of the form 
(1.137) are valid and greater than zero (nonnegative). Thus aperiodic disturbance of stability is 
impossible, disturbance of stability can have only oscillatory character in the form of so-called 
self-shaking. 

Sufficient stability conditions formulate, for example, Hurwitz criteria (also known as 
Rauss-Hurwitz criteria): it is necessary that the values of all Hurwitz determinants, the 
determinant of the Hurwitz matrix formed by a special rule from the coefficients of the 
characteristic equation, and its diagonal (main) minors) were greater than zero. 

From the analysis of Hurwitz criteria it is known [48] that when, starting from some 
stable region, to change the parameters of the system, then, in case of deterioration of the 
stability of the regime, the first to change their signs last )(n  or )1( −n  last Hurwitz inequality. 
In the first case, this occurs when the sign changes the free term of the characteristic equation, 
and this means an aperiodic violation of stability. If the sign of the penultimate changes the 

)1( −n Hurwitz inequality, then there is a change in the sign of the real part of the complex-
conjugate pair of roots of the characteristic equation, and this means a violation of stability in the 
form of self-oscillation. 

The free term of the characteristic equation (1.134) is expressed by the formula 

                                  )det( ∗∗ += ZГn SDa ω                                       (1.138) 

and for the characteristic equation (1.136) - by the formula 

                                                )det( ∗∗∗ += ZГYГn SSDa ω  .                              (1.139) 

               When calculating the forced oscillations and obtaining the approximate value of the 
periodic solution by the method h -characteristics, ie numerical integration of the differential 
equation (1.102) from the initial conditions at zero value of the composite vector of amplitudes 
of system variables, to analyze the aperiodic stability free member of the characteristic equation. 

Since the h -characteristic begins with the initial stable solution (absence of 
oscillations), when moving along it (the forcing force increases) the change of the sign of the 
free member  na   from plus to minus means the transition to the aperiodically unstable part of 
the characteristic, and the subsequent change of the sign from minus to plus - to restore 
aperiodic stability. 
              For the analysis of other types of loss of stability (for example - self-oscillation) at 
numerical integration of the differential equation (1.102) it is necessary to trace not only a sign 
of a free term (1.138) or (1.139) of the characteristic equation, but also to analyze other 
Hurwitz inequalities concerning the characteristic equation (1.134). or (1,136). 
              As we can see, the values of the matrices of differential harmonic parameters *

YГS   and  
*
ZГS and are used to analyze the stability of nonlinear oscillations calculated by the differential 

harmonic method. In the analysis of stability, their use is organic, because they, by definition, 
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are associated with infinitesimal increments of harmonic amplitudes. Their values, especially 
calculated in the last iteration of the solution refinement, fairly accurately reflect the relationships 
between the harmonics in the vicinity of the solution, where the stability is analyzed. It is also 
important that it is not necessary to additionally calculate the values of the matrices of differential 
harmonic parameters for the analysis of the stability of the solution, because they are calculated 
in the process of finding the solution. 

  
       1.5.7.  If there are more then one periodic solutions 
 
   Among the set of nonlinear vector differential equations of the form (1.64) - (1.67), the 

periodic solutions of which are sought, there are equations which at certain values of their 
parameters can have several periodic solutions. If they are found by the algorithms described 
above, solving nonlinear systems of finite equations whose amplitudes of harmonics are 
unknown, then when obtaining the first approximation by calculating the  −h characteristic - 
numerical integration of the differential equation of the form (1.102) -  there  are  difficulties. 
They are due to the fact that for such cases, depending on the parameter h , the components 
of the vector *X



, if represented 
graphically, are ambiguous, in particular - 
loop-shaped (see Fig. 1.6, there y – one of 
the components of the vector *X



). They 
pass through points that are special: at 
these points the absolute values of the 
components of the derivative dhXd *   are 
infinitely large. 
              As a result, numerical integration to 
obtain the dependence (1,100) when 
approaching such points (for example, to 
points   1hh=  or 2hh=  in Fig. 1.6) becomes impossible. Such difficulties in numerical 
integration can be avoided if we use the method described in [64] and called inversion of the 
system of differential equations. 

   The essence of inversion is that in the course of numerical integration when 
approaching a particular point, when the absolute values of the derivatives of the independent 
variable   h  of all other variables (ie - all components of the vector  *X



) grow strongly (at a 
particular point they are equal to infinity), the independent variable  h  it is necessary to make 
dependent and to make any of the components of the vector  *X



 independent. At this special 
point, the derivatives of the new independent variable of all other quantities will be zero, and in 
relation to this new independent variable, the point is no longer special. 
            Inversion - the replacement of an independent variable - is performed not at the most 
specific point, but when approaching it. After inversion, numerical integration continues, but only 
after this new independent variable. In this case, the initial value of the step can be taken as 
equal to the value of the increment that this variable received in the previous step, when it was 
still a dependent variable.The new independent variable retains this status as long as the 
absolute values of the derivatives of the other variables behind it decrease. As soon as they 

y

hh2 h1

Рис. 1.6.  Залежність  y = y[h]  петлеподібного характеруFig. 1.6. Dependence  y=y[h]  loop-shaped nature 
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read to grow, it indicates the possible presence of a special point in front of this variable, and 
therefore it is necessary to return the status of the independent variable to the parameter  h . 
This alternate exchange of the status of the independent variable between the parameter   h   
and one of the components of the vector  *X



eliminates the problem of passing special points. 
Consider which of the components of the vector   *X



 it is advisable to choose the one 
that is given the status of an independent variable during inversion. Theoretically, it can be any 
component of the vector *X



. However, if we talk about the solution of the nonlinear vector finite 
equation of the form (1.90), which is a harmonic reflection of the nonlinear vector differential 
equation of one of the forms (1.64) - (1.67), then the amplitude vectors  ГkГ XX



,...,1  as 

components of the vector *X


 most accurately calculate first-order harmonics. when replacing 
certain integrals with sums, their half-waves account for the largest number of nodes (see 
Section 1.3). Therefore, it is expedient to choose the cosine or sine component of the first 
harmonic of any of the vectors of amplitudes included in the vector *X



. Let this be the first 
amplitude vector corresponding to the variable 1x . In it it is expedient to take the second 
component, then in case of consideration of constant components and harmonics of all orders 
it will be a cosine component of amplitude of the first harmonic and in case of consideration only 
odd harmonics - a sine component of amplitude of the first harmonic. 
            The algorithm for inverting the vector differential equation (1.102) is significantly 
simplified if the independent variable  h   is added to the vector of variables  *X



 as its additional 
component. In this case, equation (1.102) must be added to the equation  

                                                  1=dhdh  .               (1.140) 
 

           At each step of numerical integration, the values of the derivatives of the vector *X


 by 
the variable  h  are calculated by solving (1.102) as a system of linear equations with respect to   

dhXd *   and the value of the derivative  dhdh   by equation (1.140). Let at some value they 
are as follows: 

 
1;;;; 111110 ==== dhdhcdhdXbdhdXadhdX sc  .      (1.141) 

 
If there was an inversion (the parameter  h   became a dependent variable, and the new non-
dependent variable - the amplitude 11cX ), it is necessary to calculate the values of the 
derivatives of all variables for this new independent variable. They can be calculated from the 
values (1.141) taking into account the formulas 
 

                                

;1

;

11

11

1110

11

10

11

10

=

=⋅=

c

c

c

cc

dX
dX

dh
dX

dh
dX

dX
dh

dh
dX

dX
dX

 

 



58 
 

                     

.1

;

11

1111

1111

11

11

11

11

dh
dX

dX
dh

dh
dh

dX
dh

dh
dX

dh
dX

dX
dh

dh
dX

dX
dX

c

cc

cs

c

s

c

s

=⋅=

=⋅=



                  (1.142) 

 
These values will be as follows:   
           .1;;;1;
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 (1.143) 

 
           The inversion algorithm allows the numerical integration of differential equations to obtain 
the dependences of the form (1.100), regardless of how many loops have graphs illustrating 
these dependencies, and how many special points on them. Thus, moving along the −h
characteristic (that is, along the dependence ][** hXX



= ), we go through all the periodic 
solutions that exist on this trajectory, regardless of which of them are stable and which are 
unstable. 

Finally, the following two remarks should be made when concluding the inversion 
algorithm, which allows the detection of periodic solutions if there are more than one. 
            1. If the system of differential equations has more than one periodic solution, then to 
detect them by the proposed method, it is necessary to set the "correct" maximum value of the 
parameter  h   when calculating the −h characteristic. Let's take another look at fig. 1.6: the :  
−h characteristic becomes obvious only after the completion of the numerical integration of the 

differential equation of the form (1.102). In the course of integration, it manifests itself gradually 
- step by step, and if at its receipt such as it is shown in fig. 1.6, given the maximum value of the 
parameter 1max hh 〈 , we would get only the upper part of the curve and would not find that it 
further turns back and spins in the form of a loop and that for all values  h   in the interval  

12 hhh 〈〈   the system of differential equations has three periodic solutions. 
2. It is obvious that the advance along the −h characteristic using the inversion 

algorithm allows to reveal all periodic solutions of the considered vector differential equation only 
on the condition that this characteristic is continuous. In all the technical problems that the author 
of this book had to consider, the continuity of  −h characteristics was confirmed. 

If when solving some problems of calculating nonlinear oscillations it turns out that the  
−h characteristic is not continuous, then for such cases we should look for other ways to find 

all roots (if the root is not one) of a vector finite equation, which is a harmonic reflection of the 
solvable vector differentialtion equation. 
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                                                                Chapter 2 

                             SOFTWARE  OF THE DIFFERENTIAL HARMONIC METHOD 
 
            2.1. Structure of the software of differential harmonic method  

 
          It should be clear to the reader who has read the previous chapter of this book that the 
differential harmonic method (DHM) as a tool for calculating nonlinear oscillations (that is, finding 
periodic solutions of nonlinear systems of differential equations describing these oscillations) is 
not intended for use in "manual" (non-automated) calculations. His niche is computer modeling 
of nonlinear oscillations, that is, with the use of a computer, in particular, a personal computer 
(PC) or a laptop. 
         The volume of preparatory work for modeling is significantly minimized if you can use pre-
prepared special software. We have developed such support for DHM, and its main elements 
are presented in this and the following chapters. The use of the software of the differential 
harmonic method makes it possible to create any program for modeling and calculation of 
nonlinear oscillations in one or another nonlinear system using the proposed method from two 
blocks of software components, as shown in Fig. 2.1. 

 
 

                    
 
 
 
 
 
 
 
 
 
 
 
 
 
             
  
                                                            SOFTWARE OF DHM 
              A block of user software   

components 
 Fig.2.1.  Structural diagram of the generalized program 
                                                           calculation of nonlinear oscillations using DHM software 
 
 

        These are the following blocks: 
        a) a block of ready-made software components (external routines, procedures) of the DHM 
software (hereinafter – DHM-S), which includes Blocks 1 - 5; 
       b) a block of user software components that he creates exclusively for this specific task. 
 

  

  Main 

program  

 

 

Block 3 

OUTP –і  processing 
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instant model 
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         All basic operations of the method are implemented in the procedures of blocks 1 – 5 of 
the DHM-S (they can be considered as macrooperations - calculation of the values of the 
amplitude vectors by the values of the nodal vectors, the values of the nodal vectors by the 
values of the amplitude vectors, the values of the matrices of differential harmonic parameters, 
integration of the system of differential equations, the variables of which there are amplitude 
vectors, etc.). 
       User software components implement what individualizes each specific task in the field of 
modeling nonlinear oscillations. 
       In this chapter, we will consider the software components included in Blocks 1 - 4 of the 
DHM-S. The  program components  of Block 5  of the DHM-S  are considered in Chapter 3. 
       All software components of the DGM-S and illustrative programs given in the book are 
written in the Fortran-90 algorithmic language [43, 69]. They can be translated by any compiler 
configured for this version of Fortran and all its younger versions, for example - the compiler of 
the integrated development environment ( IDE) Microsoft Developer Studio. 
       The choice of programming language during the development of DGM-S was determined 
by the author's experience and preferences. The Fortran-90 version of the Fortran algorithmic 
language was popular at the end of the last century among scientific and scientific and technical 
specialists. Although in recent years the family of algorithmic languages has been replenished 
with new effective languages (Pascal, C++, Python, etc), Fortran, thanks to its simplicity, ease 
of learning and close connection with the language of mathematical analysis, has not gone out 
of use among scientists and engineers. it is intensively developed: its versions Fortran-95, 
Fortran-2003 [43, 70], Fortran-2008 [71], Fortran-2018 [72] are known, which are supported by 
many IDEs. 
       While preparing the book for translation into English, the author had the idea to translate 
the DHM-S into the C++ language, and a certain part has already been translated, but in the 
process of translation, the author once again made sure that  Fortran is much more effective for 
those tasks for which DHM is intended. 
       If the sympathies of the reader of this book are still directed towards another algorithmic 
language, then he will have to translate the program components of DHM-S written in Fortran 
language into this other algorithmic language. 
       Some routines from special libraries could be used in the DHM-S, for example, a routine for 
solving systems of linear equations from the NAG Mark 20 library for Fortran-90 [43] or from any 
other similar library. However, the DHM-S proposed in this book is quite autonomous: when 
solving many problems in the field of nonlinear oscillations, at least those considered in this 
book, it was possible to do without the use of third-party subroutines. 
       This chapter provides complete listings (printouts) of software components of DHM-S 
software, and in the following chapters - printouts of user software components in illustrative 
programs of test tasks and examples with their input numerical files.1  

 
1 The user can avoid the tedious work of entering the text of software modules and data using the keyboard into 
the memory of his PC and searching for possible errors when entering them manually: copies of these software 
products can be sent  to the reader if they are ordered at the author's e-mail address: gl.lev42@ gmail.com . 
At  the  same address, you can order the version of the DGM software in the C++ language, modified for the 
Dev C++ 5.11 integrated environment (platform). 
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                                              2.2.  Program components of DHM-S 
 
       The software components of the DHM-S presented below in this chapter are grouped into 
five software blocks, as shown in Fig. 2.1. A library of subroutines for numerical modeling by the 
differential harmonic method of nonlinear oscillations can be created from these program blocks. 

 
                                    2.2.1.  The first program block  
 

       The first block of DHM-S components (let's call it Block 1) contains those procedures that 
implement operations using matrices of harmonic transformations. These are six procedures: 
SNCS, VGVS, VSVG, VSVGP, KVGVS and KVSVG. The ability of these procedures to access 
matrices of harmonic transformations is implemented here using the module function. For this, 
the block contains the ARRAY module, which makes the arrays F, G and GNP, which store the 
values of the matrices of harmonic transformations, available to these procedures, in other 
words, these arrays within the block have the status of global. 
       To compile the software components of this block, it is advisable to download them all 
together (in the form of, for example, a single Block1.for file), so as not to cause, in the case of 
separate compilation of each software component of the block, compiler messages such as 
“Cannot find module Array”. 

 
                                  2.2.1.1. Module  ARRAY 

         Text of module: 
 

 Module Array 
!--  The module with description of arrays F, G  and  GNP, that store 
!--  the matrices of harmonic transformations 
!--  that should be available to all procedures of this block  
!------------------------------------------------------ 
 implicit none 
 real,dimension(25,150)::F,G 
 real,dimension(49,150)::GNP 
!-------------------------------- 
!--  The dimension of the arrays set here allow you to set to the number N of the highest harmonic 
!--  the maximum value 12 
!--  (if are taken into account constant components and all harmonics)  
!--  or the maximum value 23 (if only odd harmonics are taken into account). 
!--  With larger values of N, the sizes of the arrays in module must be  increased. 
!--------------- 
 end module Array 

 
          The module Array consists only of a descriptive part. It describes three arrays - F, G and 
GNP, intended for storing values of matrices of harmonic transformations of the forms (1.39) or 
(1.44) and (1.42). Their value is calculated by the SNCS procedure included in Block 1 (it is 
described further in the next subsection). The values of these matrices are available to all other 
procedures of this block, due to the presence of the Use Array operator in each of them, and thus 
these matrices within the first program block receive the status of global. 

The dimensions of the F, G  and GNP arrays in this block are set in such a way that it is 
possible to set the maximum order of harmonics up to 12, taking into account constant 
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components and harmonics of all odd and even orders, and up to 23, taking into account 
harmonics of only odd orders. if it is necessary to take into account harmonics with higher orders, 
the dimensions of these matrices in the Array module must be increased.  

These dimensions can be reduced, but at the same time they will become smaller than 
12 or 23, respectively, the maximum orders of harmonics that can be set 

 
                                                                   

                                 2.2.1.2.   Procedure  SNCS 
      
            Text of the procedure: 
    Subroutine SNCS(IG,N,NG,NG1,M) 
!--  The procedure for calculating the dimensions M,NG,NG1 and the  
!--  values of the matrix F, G  and  GNP of harmonic transformations, 
!--   which are stored in the module Array 
!---------------------------------  
 Use Array 
 implicit none 
 real::SM,DE,ETA,E 
 real,parameter::PI=3.14159 
 integer,intent(in)::IG,N 
 integer,intent(out)::NG,NG1,M 
 integer::i,j 
!----------------- 
!--   IG - control varoiable:  
!--        if =0, then are taken into account constant components and all  harmonics 
!--        if =1, then are taken into account only odd harmonics 
!--     N - the highest order of harmonics taken into account 
!----------------- 
!--     NG= 2*N+1 (at IG=0) and N+1 (at IG=1)- the number of rows of  matrices F and G 
!--     NG1= 4*N+1(at IG=0) and 2*N+1 (at IG=1)- the number of rows of   matrix GNP 
!--     M - the number of nodes per period (at IG=0) or half-period (at  IG=1) 
!--            and the number of columns of matrices F, G and GNP  
!---------------------------- 
        if(IG.eq.1.or.IG.eq.0) goto 1;  goto 5 
   1   if(IG.eq.0.and.N.gt.12) goto 10 
         if(IG.eq.1.and.N.gt.23) goto 20 
 if(IG.eq.0) then 
         NG=2*N+1; NG1=4*N+1 
 else 
    NG=N+1;   NG1=2*N+1 
 end if 
         M=6*NG;   if(M.le.24)M=24;   SM=2./M 
            DE=PI/M;   if(IG.eq.0) DE=2.*DE 
   if(IG.eq.1) goto 2 
!--  when are taken into account constant components and all harmonics   
 Do j=1,M 
             ETA=DE*(j-1);   F(1,j)=1.;   G(1,j)=.5*SM 
         GNP(1,j)=.5*SM 
                 do i=2,NG,2 
                   E=ETA*i/2.;   F(i,j)=cos(E);   F(i+1,j)=sin(E) 
      G(i,j)=cos(E)*SM;   G(i+1,j)=sin(E)*SM 
                 end do 
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             do i=2,NG1,2 
                             E=ETA*i/2.  
                GNP(i,j)=cos(E)*SM; GNP(i+1,j)=sin(E)*SM 
                          end do 
            end do; goto 3 
!----  when are taken into account only odd harmonics  
     2  Do j=1,M 
           E=DE*(j-1);    GNP(1,j)=.5*SM 
       do i=1,NG,2 
         F(i,j)=cos(E*i);    F(i+1,j)=sin(E*i) 
         G(i,j)=F(i,j)*SM;   G(i+1,j)=F(i+1,j)*SM 
       end do     
      do i=2,NG1,2 
        GNP(i,j)=cos(E*i)*SM;   GNP(i+1,j)=sin(E*i)*SM 
      end do 
        end do 
     3  return 
!--   A message to the console in the event of an abnormal termination 
     5 write(*,*)' You specified IG that is neither 0 or 1' 
         stop 
    10 write(*,*)'  At IG=0 you set N>12' 
          write(*,*)' At N>12 need to resize' 
          goto 30 
    20 write(*,*)'  At IG=1 you set N>23' 
          write(*,*)' At N>23 need to resize' 
    30 write(*,*)' of matrices F, G  and  GNP' 
          write(*,*)' in descriptive part of the module Array'  
          stop 
          end Subroutine SNCS 

  
           The SNCS procedure is designed to calculate the dimensions and values of harmonic 
transformation matrices of the form (1.39) or (1.44), of the form (1.42) and (see formula (1.57) ), 
which are stored by the arrays F, G  and  GNP  described in the  Array  module. To access these 
arrays, the procedure has a  Use Array  operator. 
            The procedure has two input parameters -  IG and N. 
            The first input parameter  IG  is a control variable that can have a value of  0 or 1. 
Assigning it a value of  0 means that constant components and harmonics of even and odd 
orders are taken into account in the calculations for all coordinates of the modeled system, and 
assigning a value of  1  means that only odd harmonics are taken into account orders The second 
input parameter of the procedure is the variable N - the highest harmonic order taken into 
account; when IG=1, its value can only be an odd integer. 
        . The output parameters of the procedure are the arrays F, G  and GNP, which store the 
values of the matrices of harmonic transformations, and the dimensions NG,  NG1  and  M  of 
these matrices. 
           When  IG = 0, the number of  NG  rows of matrices of the form (1.39) or (1.44) and matrices 
of the form (1.42), that is, the used rows of arrays   F   and  G, is determined by the formula 
 

                                                     ,                                           (2.1) 
 

12 += nNg



64 
 

and the number of rows of the matrix  included in the formula (1.57), that is, the rows of the 
GNP array used, according to the formula 
 
                                                                                                       (2.2) 

In these formulas,   is the highest order of the harmonics taken into account. 
          Note that the matrix     is stored in memory (array F) in transposed form. 
When IG = 1, the number of rows of matrices  and   (used rows of arrays  F  and G) is 
determined by the formula 
                                                                                                             (2.3) 

and the number of rows of the matrix    (used rows of the  GNP  array) - according to the 
formula 
                                                                                                       (2.4) 
 
The number of columns of arrays  F , G and  GNP , used to store matrices of harmonic 
transformations  ,     and     (the same - the number of nodes per period at  IG = 0  or 
the number of nodes per half period at  IG = 1) is determined by the formula 
 
                                                                .                                              (2.5) 

At the same time, there are at least six nodes per half-wave of the highest-order harmonic. 
        It is clear that the number of rows and columns calculated by formulas (2.1) - (2.5) should 
not exceed the size of the  F, G  and GNP  arrays defined in the  Array  module. Therefore, the 
set value of the variable     is controlled by the procedure, and if the value exceeds the 
maximum allowable (12 at IG = 0 and 23 at IG = 1), the calculations are stopped with a 
corresponding message on the monitor 
         Next, the  SNCS  procedure calculates the values of the matrices ,    and   , 
which are described in the Array module as arrays F, G  and  GNP and are available to this 
procedure thanks to the  Use Array  statement. 
        The values of matrices       and    are calculated when   IG = 0 according to formulas 
(1.39) and (1.42) and when IG = 1 according to formula (1.44) and modified formula (1.42). The 
value of the matrix  (GNP  array) is calculated using the same formulas as the matrix . It 
differs from the matrix  only in that it has not  NG, but NG1 rows, because when calculating 
the values of the matrices of differential harmonic parameters (see VSVGP and GRPAR 
procedures below), it is necessary to expand the function of the distribution of differential 
parameters to the -th  harmonic into a Fourier series. 
         The  SNCS procedure must be called to execute at the beginning of the calculation, and 
the values of the matrices F , G  and  GNP  calculated by it remain unchanged until the end of the 
calculation, unless it changes the number of harmonics considered. If the number of harmonics 
taken into account changes, the SNCS procedure must be called again for execution at each 
change. 

 

nG2

.141 += nNg

n
F

F G

1+=nNg

nG2

.121 += nNg

F G nG2

gNM 6=

n

F G nG2

F G

nG2 G
G

n⋅2



65 
 

                                   2.2.1.3.  Procedure  VGVS 
      
                      Text of procedure: 

  Subroutine VGVS(VG,VS,NG,M) 
!--   The procedure for calculating the value of the nodal vector VS with  
!--   size M  by the value of the amplitude vector VG with size NG 
!--   M - the number of nodes per period (at IG=0)   or half-period (at IG=1) 
! --    and the number of columns of matrix F 
!--   NG - the number of elements of a simple vector of amplitudes 
!-------------------- 
  Use Array 
  implicit none 
  integer,intent(in)::NG,M 
  real,dimension(NG),intent(in)::VG 
  real,dimension(M),intent(out)::VS 
  integer::i,j 
           Do  j=1,M 
             VS(j)=0. 
               do i=1,NG 
                    VS(j)=VS(j)+VG(i)*F(i,j) 
               end do 
           end do 
          return 
          end  subroutine VGVS 
 

          The  VGVS  procedure is intended for performing calculations according to formula (1.38) 
- calculating the value of the nodal vector based on the value of the amplitude vector. The value 
of the matrix  F  required for the operation is available from the  Array  module. 
          Before calling the procedure, the formal parameter VG (vector of amplitude) must have a 
numerical value, and the  SNCS procedure must first run (so that the matrix , the value of 
which is stored in the  F  array, has a value). 
 

                         2.2.1.4.  Procedure  VSVG 
 
Text of procedure: 

  Subroutine VGVS(VG,VS,NG,M) 
!--   The procedure for calculating the value of the amplitude vector VG  
!--   with size NG by the value of the  nodal vectorof VS with size M 
!--   M - the number of nodes per period (at IG=0)   or half-period (at IG=1) 
!--     and the number of columns of matrix G  
!--   NG - the number of elements of a simple vector of amplitudes 
!-------------------- 
  Use Array 
  implicit none 
  integer,intent(in)::NG,M 
  real,dimension(NG),intent(in)::VG 
  real,dimension(M),intent(out)::VS 
  integer::i,j 
           do  j=1,M 
             VS(j)=0. 
               do i=1,NG 

F
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                 VS(j)=VS(j)+VG(i)*F(i,j) 
               end do 
          end do 
          return 
          end  subroutine VGVS 
      
           The  VSVG  procedure is designed to perform calculations according to formula (1.41) - 
the value of the amplitude vector is calculated from the value of the nodal vector. The value of 
the matrix  G  required for the operation is available from the  Array  module. 
            Before calling the procedure, the formal parameter VS (nodal vector) must have a 
numerical value and the  SNCS  procedure must be executed before that. 
 

 
                                        2.2.1.5.  Procedure VSVGP 
        
        Text of procedure: 
 

      Subroutine VSVGP(VS,VG,NG1,M) 
!--   The procedure for Fourier series expansion of the parameter  distribution function VS(M)  
!--   for calculating the matrix of differential harmonic paramrters 
!--   M - the number of nodes per period (at IG=0)   or half-period (at IG=1) 
!--      and the number of columns of matrix GNP 
!-------------------------- 
  Use Array 
               implicit none 
  integer,intent(in)::NG1,M 
  real,dimension(NG1),intent(out)::VG 
  real,dimension(M),intent(in)::VS 
  integer::i,j 
         do i=1,NG1  
              VG(i)=0. 
                 do j=1,M 
                     VG(i)=VG(i)+VS(j)*GNP(i,j) 
    end do 
        end do 
      return 
      end subroutine VSVGP 

 
          The VSVGP procedure is used when calculating the values of the matrices of differential 
harmonic parameters and performs calculations according to formula (1.57) - decomposes the 
distribution function on the period (or half-period, when only odd harmonics are taken into 
account) of the differential parameters into a Fourier series. The value of the  GNP  matrix 
required for the operation is available from the  Array  module by using the  Use Array  statement. 
          Before calling the procedure, the formal parameter VS (nodal vector, which specifies the 
distribution on the period or half-period of the differential parameter) must have a numerical 
value and the SNCS  procedure must be executed. 
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                                   2.2.1.6.  Procedure KVGVS 
      
               Text of procedure: 

      Subroutine KVGVS(K,VG,NG,NK,VS,M,MK) 
!--    Процедура перетворення складеного К-кратного   вектора амплітуд VG розміру NK 
!--    в складений  К-кратний вузловий вектор  VS розміру MK 
!--    M - кількість вузлів на періоді(при IG=0) і напівперіоді  
!--     (при IG=1), вона ж - кількість стовпців матриць F, G і GNP 
!--    NG - розмірність простого вектора амплітуд 
!-------- 
  Use Array 
  implicit none 
  integer,intent(in)::K,NG,NK,M,MK 
  real,dimension(NK),intent(in)::VG 
  real,dimension(MK),intent(out)::VS 
  integer::i,j,iN,jM,L 
      do i=1,K 
        iN=(i-1)*NG 
        do j=1,M 
          jM=(j-1)*K+i; VS(jM)=0. 
            do L=1,NG 
             VS(jM)=VS(jM)+VG(L+iN)*F(L,j) 
            end do 
          end do 
      end do 
      return 
      end subroutine KVGVS 
 

          The   procedure performs calculations according to the formula (1.114a) - based on the 
value of the composite amplitude vector, it calculates the value of the composite nodal vector, 
which is formed here according to the formula (1.118). The value of the matrix  F  required for 
the operation is available from the  Array  module by using the  Use Array  statement. 
          Before calling the procedure, the formal parameter VG (composite vector of amplitudes) 
must have a numerical value and the SNCS procedure must work (that is, the values of the 
matrices of harmonic transformations are calculated). 

    
                   2.2.1.7.  Procedure KVSVG 
      
Text of procedure: 

Subroutine KVSVG(K,VS,M,MK,VG,NG,NK) 
!--  The procedure for calculating the value of the composite vector 
!--  of amplitudes  VG with size NK=NG*K 
!--  by the value of the nodal composite vector VS with size MK=М*К 
!--  M - the number of nodes per period (at IG=0)  or half-period (at IG=1) 
!--     and the number of columns of matrix G   
!--  NG - the number of elements of a simple vector of amplitudes 
!--------------------- 
 Use Array 
  implicit none 
  integer,intent(in)::K,NG,NK,M,MK 
  real,dimension(NK),intent(out)::VG 
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  real,dimension(MK),intent(in)::VS 
  integer::i,j,iN,iK,L,LN 
      do i=1,K 
        iN=(i-1)*NG; iK=K-i 
         do L=1,NG 
           LN=L+iN; VG(LN)=0. 
              do j=1,M 
                    VG(LN)=VG(LN)+VS(j*K-iK)*G(L,j) 
 end do 
          end do 
      end do 
      return 
      end  subroutine KVSVG 
      
          The  KVSVG  procedure performs calculations according to the formula (1.115a) or 
(1.115b) - based on the value of the complex nodal vector, it calculates the value of the complex 
vector of amplitudes. The value of the matrix  G  required for the operation is available from the 
Array  module by using the  Use Array  statement. 
          Before calling the procedure, the formal parameter VS (composite nodal vector) must have 
a numerical value and the SNCS  procedure must be executed. 

 
                         2.2.2.  The second program block  

           The second block of DHM-S components (Block 2) contains six procedures: OMA, OMV, 
OMAB, OMVB, GRPAR and GRMAT. These are procedures that implement operations with the 
differentiation matrix D  of the form (1.16) or (1.17) and calculate the values of the matrices of 
differential harmonic parameters (1.56) and (1.107). 
           The procedures of this block do not require access to matrices of harmonic 
transformations. 

 
                                2.2.2.1.  Procedure  OMA 
 
Text of the procedure: 

         Subroutine OMA(IG,A,B,NG,OM) 
!---   Procedure for multiplying circular frequency OM  and matrix D of order NG  
!--    by the matrix A of order NG 
!--    IG - control variable:  
!--         if =0, then constant components and harmonics of all orders  are taken into account 
!--         if =1, then only harmonics of odd orders are taken info account 
!-------------------------- 
  Implicit none 
  integer,intent(in)::IG,NG 
  real,intent(in)::OM 
  real,dimension(NG,NG),intent(in)::A 
  real,dimension(NG,NG),intent(out)::B 
  integer::i,j 
  real::C 
      if(IG.eq.1) goto 1 
!--  when const.components and harmonics of all orders are taken into account 
      do j=1,NG 



69 
 

       B(1,j)=0.  
        do i=2,NG,2 
           C=A(i,j) 
            B(i,j)=A(i+1,j)*OM*i*.5; B(i+1,j)=-C*OM*i*.5 
         end do 
      end do;   goto 2 
!---  when only harmonics of odd orders are taken info account 
    1 do  j=1,NG 
         do i=1,NG,2 
             C=A(i,j)*OM*i  
              B(i,j)=A(i+1,j)*OM*i;  B(i+1,j)=-C 
          end do 
       end do     
    2 return 
       end subroutine OMA 

 
                 The OMA procedure is designed to perform the operation of multiplying the 
product of the circular frequency ω  and the differentiation matrix  D  of the form (1.16) or 
(1.17) by a square matrix, just as it is performed in formula (1.27). 
           When calling this procedure, the OM, NG  and  A   parameters must have numeric values. 
The result of this operation is the assignment of the product  DAω  to the matrix  B  . 
 
                                             2.2.2.2. Процедура OMV 
        Text of the procedure: 

      Subroutine OMV(IG,V,V1,NG,OM) 
!--    Procedure for multiplying circular frequency OM and matrix D of order NG  
!--    by the vector of amplitudes V with the number of elements NG  
!--    IG - control variable:  
!--         if =0, then constant components and harmonics of all orders  are taken into account 
!--         if =1, then only harmonics of odd orders are taken info account 
!-------------------- 
  Implicit none 
  integer,intent(in)::IG,NG 
  real,intent(in)::OM 
  real,dimension(NG),intent(in)::V 
  real,dimension(NG),intent(out)::V1 
  integer::i 
  real::C 
   If(IG.eq.1) goto 1 
!--  when const.components and harmonics of all orders are taken into account 
      V1(1)=0. 
      do i=2,NG,2 
           C=OM*V(i)*i*.5 
           V1(i)=OM*V(i+1)*i*.5;  V1(i+1)=-C 
       end do;  goto 2 
!---  when only harmonics of odd orders are taken info account 
    1 do i=1,NG,2 
           C=OM*V(i)*i 
           V1(i)=OM*V(i+1)*i;  V1(i+1)=-C 
       end do 
    2 return 
       end subroutine OMV 
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          The  OMV  procedure is designed to perform the operation of multiplying the product of 
the circular frequency   ω  and the differentiation matrix  D  of the form (1.16) or (1.17) by the 
vector of amplitudes of the form (1.13), just as it is performed in the formula (1.15).  
           When calling this procedure, the OM,  NG   and  V  parameters must have numeric values. 
The result of this operation is the assignment of the product VD



ω  to the vector  V1. 

 
 .                                          2.2.2.3.  Procedure  OMAB 
         Text of the procedure: 

       Subroutine OMAB(IG,A,B,NG,K,NK,OM) 
!--    Procedure for multiplying the matrix A of order NK=NG*K       
!--    by circular frequency OM and the composite matrix DC  on the left (B=OM*DC*A) 
!--    NG - the number of elements of simple vector of amplitudes 
!--    IG - control variable:  
!--        if =0, then const. components and harmonics of all orders  are taken into account 
!--        if =1, then only harmonics of odd orders are taken info account 
!---------------------------- 
  Implicit none 
  integer,intent(in)::IG,NG,K,NK 
  real,intent(in)::OM 
  real,dimension(NK,NK),intent(in)::A 
  real,dimension(NK,NK),intent(out)::B 
  integer::i,j,jK,iK,i1,j1 
  real::C 
  If(IG.eq.1) goto 1 
!-- when const.components and harmonics of all orders are taken into account 
      do i1=1,K 
        iK=(i1-1)*NG 
         do j1=1,K 
           jK=(j1-1)*NG 
             do j=1,NG 
               B(1+iK,j+jK)=0. 
                 do i=2,NG,2 
                     C=A(i+iK,j+jK) 
                      B(i+iK,j+jK)=OM*A(i+iK+1,j+jK)*i/2. 
                      B(i+iK+1,j+jK)=-C*OM*i/2. 
    end do 
  end do 
            end do 
      end do;  goto 2 
!---  when only harmonics of odd orders are taken info account 
    1 do i1=1,K 
         iK=(i1-1)*NG 
            do j1=1,K 
             jK=(j1-1)*NG 
               do j=1,NG 
                 do i=1,NG,2 
                     C=A(i+iK,j+jK)*OM*i 
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                     B(i+iK,j+jK)=A(i+iK+1,j+jK)*OM*i 
                     B(i+iK+1,j+jK)=-C 
    end do 
 end do 
          end do 
       end do 
    2 return 
       end subroutine OMAB 

 
         The  OMAB  procedure is designed to perform the operation of multiplying the product of 
the circular frequency   ω  and the complex differentiation matrix D  of the form (1.78) by a 
square matrix, just as it is performed according to the formula (1.106). 
          When calling this procedure, the parameters OM, NG, K, NK  and  A  must have numeric 
values. The result of this operation is the assignment of the product  **ADω  to the matrix B. 
                                        
                                         2.2.2.4. Procedure OMVB 
         Text of the procedure: 

         Subroutine OMVB(IG,V,V1,NG,K,NK,OM) 
!--    Procedure for multiplying the circular frequency OM and composite matrix D 
!--    of order NK=NG*K by composite K-fold vector of amplitudes  
!--    with the number of elements NK=NG*K (V1=OM*V*D) 
!--    IG - control variable:  
!--        if =0, then const.omponents and harmonics of all orders  are taken into account 
!--        if =1, then only harmonics of odd orders are taken info account 
!------------------------------ 
  Implicit none 
  integer,intent(in)::IG,NG,K,NK 
  real,intent(in)::OM 
  real,dimension(NK),intent(in)::V 
  real,dimension(NK),intent(out)::V1 
  integer::i,j,iK 
  real::C 
   If(IG.eq.1) goto 1 
!-- when const. components and harmonics of all orders are taken into account 
      do i=1,K 
         iK=(i-1)*NG; V1(1+iK)=0. 
         do j=2,NG,2 
            C=V(j+iK)*j*OM*.5 
            V1(j+iK)=V(j+iK+1)*j*OM*.5 
            V1(j+iK+1)=-C 
         end do 
      end do;  goto 2 
!--- when only harmonics of odd orders are taken info account 
    1 do i=1,K 
       iK=(i-1)*NG 
          do j=1,NG,2 
             C=V(j+iK)*j*OM 
             V1(j+iK)=V(j+iK+1)*j*OM 
             V1(j+iK+1)=-C 
           end do 
       end do 
    2 return 
        end subroutine OMVB 
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         The  OMVB  procedure is designed to perform the operation of multiplying the product of 
the circular frequency   ω   and the complex differentiation matrix  D   of the form (1.78) by the 
complex vector of amplitudes of the form (1.79), just as it is performed according to the formula 
(1.77). 
        When calling this procedure, the parameters OM, NG, K, NK  and V  must have numeric 
values. The result of this operation is the assignment of the product  **VD



ω  to the vector V1. 
. 
                                       2.2.2.5.  Procedure  GRPAR  
       Text of the procedure:  

          Subroutine GRPAR(IG,SY,NG,SYC,M,NG1) 
!--    The procedure for calculating the value of the matrix SY 
!--    of order NG of differential harmonic parameters 
!--    by value of diagonal matrix of parameters in nodes, which is given 
!--    by the vector SYC with the number the elements M 
!--    IG - control variable:  
!--          if =0, then constant components and harmonics of all orders are taken into account 
!--           if =1, then only harmonics of odd orders are taken info account 
!--    M - the number of nodes per period (at IG=0)  and per half-period (at IG=1),  
!--           and number of column of matrices F, G and GNP  
!--    NG - the number of elements of simple vector of amplitudes 
!----------------------- 
  Implicit none 
  integer,intent(in)::IG,NG,M,NG1 
  real,dimension(M),intent(in)::SYC 
  real,dimension(NG,NG),intent(out)::SY 
  real,dimension(NG1)::GL 
  integer::i,j,i1,i2,ij,ji,j1,jk,jk1,jk2,j11,jii,ji1,ji2 
!--     GL- working vector with number of elements NG1  
!--     NG1=2*N+1 (at IG=1)  and  4*N+1 (at IG=0) 
!---------------------------- 
      Call VSVGP(SYC,GL,NG1,M) 
  if(IG.eq.1) goto 1 
!-- when const.components and harmonics of all orders are taken into account 
      jK=NG-1; jK1=jK-2 
         do j=1,NG 
            SY(1,j)=GL(j)*.5 
          end do 
       SY(1,1)=2.*SY(1,1) 
        do i=2,jK1,2 
            i2=i*2; i1=i+1; SY(i,i)=GL(1)+GL(i2)*.5 
            SY(i,i1)=GL(i2+1)*.5; SY(i1,i1)=GL(1)-GL(i2)*.5 
            j1=i+2 
            do j=j1,jK,2 
              j11=j+1; ji=j-i; jii=j+i; ji1=ji+1; ji2=jii+1 
              SY(i,j)=(GL(ji)+GL(jii))*.5 
              SY(i,j11)=(GL(ji1)+GL(ji2))*.5 
              SY(i1,j)=(-GL(ji1)+GL(ji2))*.5 
              SY(i1,j11)=(GL(ji)-GL(jii))*.5 
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           end do 
         end do 
           SY(jK,jK)=GL(1)+GL(2*jK)*.5  
    SY(jK,NG)=GL(2*jK+1)*.5 
           SY(NG,NG)=GL(1)-GL(2*jK)*.5 
        do j=1,jK 
          i1=j+1 
            do i=i1,NG 
              SY(i,j)=SY(j,i) 
            end do 
       end do   
        do i=2,NG 
          SY(i,1)=2.*SY(i,1) 
       end do;  goto 3 
!---  when only harmonics of odd orders are taken info account 
    1 jK=NG-1;  if(jK.EQ.1) goto 2;  jK1=jK-2 
       do i=1,jK1,2 
         i2=i*2;  SY(i,i)=GL(1)+GL(i2)*.5 
         SY(i,i+1)=GL(i2+1)*.5 
         SY(i+1,i+1)=GL(1)-GL(i2)*.5 
         j1=i+2 
           Do j=j1,JK,2 
             ij=i+j;  ji=j-i 
             SY(i,j)=(GL(ji)+GL(ij))*.5 
             SY(i,j+1)=(GL(ji+1)+GL(ij+1))*.5 
             SY(i+1,j)=(-GL(ji+1)+GL(ij+1))*.5 
             SY(i+1,j+1)=(GL(ji)-GL(ij))*.5 
           end do 
        end do  
    2 jK2=2*jK 
       SY(jK,jK)=GL(1)+GL(jK2)*.5 
       SY(jK,NG)=GL(jK2+1)*.5 
       SY(NG,NG)=GL(1)-GL(jK2)*.5 
      do j=1,jK 
        i1=j+1 
          do i=i1,NG 
            SY(i,j)=SY(j,i) 
          end do   
       end do  
    3 return 
       end  subroutine GRPAR 

 
             The GRPAR  procedure is designed to calculate the value of the matrix of differential 
harmonic parameters (MDHP)  SY  of the form (1.45). It implements the algorithm 1.3 described 
in section 1.4, according to which the value of MDHP is calculated according to the formula 
(1.56). 
             The  NG, NG1, M  and SYC parameters must be set to numeric values before the 
procedure is invoked. Here, SYC  is a vector of size M, the elements of which are assigned the 
values of the diagonal matrix of differential parameters of the form (1.49)  in  M  nodes on a 
period or half period.  
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                                              2.2.2.6.  Procedure  GRMAT 
 
         Text of the procedure:  

       Subroutine GRMAT(IG,SG,NK,SC,MK,K,M,NG,NG1) 
!--   The procedure for calculating the value of the composite matrix SG 
!--   of differential harmonic parameters of order NK=NG*K 
!--   by value of composite martix SC of parametersin nodes with dimensions MK on K  (MK=M*K) 
!--   IG - control variable:  
!--     if =0, then const.components and harmonics of all orders  are taken into account 
!--     if =1, then only harmonics of odd orders are taken info account 
!--   NG - the number of elements of simple vector of amplitudes 
!--   NG1=2*N+1 (at IG=1)  i  4*N+1 (at IG=0) 
!--   M - the number of nodes per period (half-period) 
!--   SYC - working vector with number of elements M 
!--   S - working array of order NG 
!----------------------------- 
 Implicit none 
 integer,intent(in)::IG,NG,NG1,K,NK,M,MK 
 real,dimension(MK,K),intent(in)::SC 
 real,dimension(NK,NK),intent(out)::SG 
 real,dimension(NG,NG)::S 
 real,dimension(M)::SYC 
 integer::i,j,iN,jN,jM,ii,jj 
      do i=1,K 
        iN=(i-1)*NG 
         do j=1,K 
            jN=(j-1)*NG 
              do jM=1,M 
                 SYC(jM)=SC((jM-1)*K+i,j) 
              end do 
              Call GRPAR(IG,S,NG,SYC,M,NG1) 
           do ii=1,NG 
             do jj=1,NG 
               SG(ii+iN,jj+jN)=S(ii,jj) 
             end do 
          end do 
        end do 
      end do 
      return 
      end subroutine GRMAT 

 
           The  GRMAT  procedure is designed to calculate the value of the composite matrix SY of 
the differential harmonic parameters of the form (1.121), (1.122). It implements algorithm 1.5 
described in section 1.5.4. When calculating the value of the  SY  matrix, the procedure 2k   
times (in a loop) calls the  GRPAR  procedure for execution. 
         Parameters K, M, NK, MK, NG, NG1  and  SC must be assigned numerical values before the 
GRMAT procedure is invoked. Here, SC is a matrix of size  MK by K, which contains M blocks - 
square matrices of order K. Each of these matrices has the values of the matrix of differential 
parameters in  1, ... , M  nodes on a period (semi-period), which are diagonal blocks of matrices 
of the form (1.127). 
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                                   2.2.3.  The third program block  
 
          The third block of DHM-S components called Block 3 contains three procedures: 
HARMOSC, CALCULU and IMPROVE, which implement algorithms for determining periodic 
solutions of nonlinear systems of differential equations - numerical values of composite 
amplitude vectors representing these solutions, as well as in cases of self-oscillation calculation, 
the circular frequency of the fundamental harmonic. 
 

2.2.3.1. Procedure  HARMOSC 
           Text of the procedure: 

    Subroutine HARMOSC(K,Y0,E,NK,HM,H1,EPS1,EPS2,KER) 
!--   The procedure for calculating nonlinear oscillations as a sum of  
!--   harmonics - determining the periodic solution (solutions) of a  
!--    nonlinear system of differential equations. 
!--   The first approximation of the solution is obtained by calculating  
!--   the h-characteristic (numerical integration by the Kutt-Merson method  
!--   with a variable step and inverting when approaching special points).  
!--   The solution is refined using Newton's method. 
!------------------- 
  Implicit none 
 integer,intent(in)::K,NK 
 integer,dimension(10),intent(in)::KER 
 real,intent(in)::HM,H1,EPS1,EPS2 
 real,dimension(NK)::E 
 real,dimension(NK+2)::Y0,Y1,Y2,F0,F1,F2 
 real,dimension((KER(9)/KER(8)+1)*NK+2)::Y22 
 real,dimension(NK+1)::U 
 real::S,C1,C2,C3,C4,C5,C6,C7,C8,S1,SN,E1,E2,PX0,PH0,PX1,PH1,Y0N,Y2N,AL,AI,AKER 
 integer::NG,NG1,M,MK,KH,L,NN,KI,ID,i,ij,KK,INEV,NI,NIT,LST 
!------------------- 
!    Procedure parameters:     
!--   K - the order of the system of differential equations 
!--    Y0 - a vector of variables with size NK+2, its elements from the 1st 
!--            to NK,these are the elements of the composite vector of amplitudes, 
!--    NK+1 component is the circular frequency of the first harmonic, 
!--     NK+2 (last) component - parameter h; 
!--    E - composite vector of amplitudes of forcing force; 
!--    NK - the size of the composite vectors of amplitudes; 
!--    HM - the maximum value of the parameter h; 
!--    H1 - the value of the param. h, at which it is necessary to  clarify  solution by Newton's method; 
!--    EPS1 - relative accuracy of h-characteristic calculation; 
!--    EPS2 - relative accuracy when refined by Newton's method; 
!--    KER - an array of control variables, the values of its components are as follows: 
!--    KER(1)=0 –const.components and all harmonics are taken into account 
!--    KER(1)=1 - only odd harmonics are taken into account; 
!--    KER(2)=1 - differential equations are in written form (1.65)  or (1.67); 
!--    KER(2)=0 -                      in written form (1.64) or (1.66); 
!--    KER(3)=0 -                      in written form (1.64) or (1.65) 
!--    KER(3)=1 -                      in written form (1.66) or (1.67); 
!--    KER(4)=0 - forced oscillations; 
!--    KER(4)=1 - parametric oscillations; 
!--    KER(4)=2 - self-oscillation; 
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!--    KER(5)=1 - it is necessary to print (remember) the values of the  vector of variables 
!--                   at all points of the h-characteristic; 
!--    KER(6)=1 - it is necessary to stop the movement along  the h-characteristic after passing  
!--                     its first special point;;  
!--   KER(7) -  if =0 - there are no hysteresis characteristics;  if equal to a whole positive number,  
!--        it means that in  the problem there are hysteresis characteristics and this   whole number is the 
!—      number of steps  to expand the loop of the hysteresis characteristic to the real one 
!--     KER(8)- the order of the highest harmonic; 
!--     KER(9)- the order of the highest harmonic when increasing the  number of harmonics  
!--                taken into account; 
!--                if KER(9)=0, no scaling is performed 
!--     KER(10)- if =0, then  after each increase in the number of harmonics, there are no printouts,  
!--               the results are  printed only after taking into account the harmonics with the highest order, 
!--               if =1, then printouts are present after each increment  
!---------------------------- 
        write(1,5) KER(8) 
    5 format(2X,'The highest harmonic order=',i2) 
    call SNCS(KER(1),KER(8),NG,NG1,M) 
!-- calculated the values of matrices of harmonic transformations 
     if(KER(4).ne.0)E=0. 
   MK=M*K      !-- MK - the size of the composite nodal vectors 
    KH=NK+2      !-- KH - number of components of the vector Y0, which 
                                        !-- is an independent variable 
   AL=0.             !-- AL - the narrowing factor of the loops of the 
                                         !-- characteristics of the hysteresis form (if any) 
   KI=0              !-- KI - control variable, with KI=0 – calculation 
                                         !-- of the h-characteristic, with KI=1 – refinement 
                                         !-- of the solution by Newton's method 
   INEV=1     
        !-- INEV - control variable, when INEV=0 - calculation of fluctuations; 
        !--        when INEV=1 - calculation of the inconsistencies for the  
         !--        initial value of Y0 
   call CALCULU(KER,KI,INEV,AL,Y0,F0,U,NK,K,NG,NG1,M,MK,E,KH) 
                     !-- the CALCULU procedure calculated the inconsistencies F0 for the  
                      !-- initial value Y0 
      if(KER(4).eq.0)goto 4 
      write(1,1) 
    1 format(3X,'The initial value of the vector of amplitudes:') 
       write(1,3)Y0 
       write(1,2) 
    2 format(3X,'Residua for the initial value of the vector of amplitudes:') 
       write(1,3)F0 
    3 format(3X,4E12.4) 
    4 do i=1,NK+1 
          U(i)=F0(i) 
       end do         
!--- U - vector of residual 
       INEV=0;   L=0     !--  L - number of the root at the point h=H1 
       if(KER(5).ne.1)goto 31 
        write(1,30) 
   30 Format(/10X,'The h-characteristic is calculating') 
!---------------------------------------------- 
!---  Two first small steps according to Euler: 
   31 do i=1,2 
   call CALCULU(KER,KI,INEV,AL,Y0,F0,U,NK,K,NG,NG1,M,MK,E,KH) 
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!--- here the CALCULU procedure calculates the derivative vector F0 
   Y0=Y0+.0005*F0 
        end do 
   S=.05      !-- S - the initial length of the integration step 
   LST=0 
!-------------------------------------------- 
!-- Step start (Kutt-Merson method) 
   40 continue 
         LST=LST+1 
         NN=0 !-- zeroing of the NN damping, which records the fact of step crushing 
!------------------------------------------------------ 
!--  step start (if there was a decrease in step length) 
   50  C1=S/3.; C2=S/6.;  C3=S/8.; C4=3.*C3 
          C5=S/2.; C6=3.*C5; C7=2.*S; C8=2.*C1 
   KI=0        !-- updating the KI value 
   call CALCULU(KER,KI,INEV,AL,Y0,F0,U,NK,K,NG,NG1,M,MK,E,KH) 
                 PX0=F0(2); PH0=F0(NK+2) 
!-- PX0, PH0 - derivatives of the 2nd and NK+2nd components  
!--   at the beginning of the step 
            Y1=Y0+C1*F0 
   call CALCULU(KER,KI,INEV,AL,Y1,F1,U,NK,K,NG,NG1,M,MK,E,KH) 
             Y1=Y0+C2*(F0+F1) 
   call CALCULU(KER,KI,INEV,AL,Y1,F1,U,NK,K,NG,NG1,M,MK,E,KH) 
             Y1=Y0+C3*F0+C4*F1 
   call CALCULU(KER,KI,INEV,AL,Y1,F2,U,NK,K,NG,NG1,M,MK,E,KH) 
             Y1=Y0+C5*F0-C6*F1+C7*F2 
   call CALCULU(KER,KI,INEV,AL,Y1,F1,U,NK,K,NG,NG1,M,MK,E,KH) 
   PX1=F1(2);   PH1=F1(NK+2) 
!--  PX1,PH1 - derivatives of the 2nd and NK+2nd components at the end of the step 
              Y2=Y0+C2*(F0+F1)+C8*F2 
!--  end of calculations in the integration step 
!--  Y2 - the value of the vector of variables at the end of the step 
!---------------------------------------- 
!--  step accuracy assessment 
          ID=0; E1=0.;  E2=0. 
          do i=1,NG 
              E1=E1+Y2(i)**2;  E2=E2+(0.2*(Y1(i)-Y2(i)))**2 
          end do 
          E1=sqrt(E1)*EPS1;   E2=sqrt(E2) 
          If(E2.lt.E1) goto 60 
          S=S/2.;  NN=1;  goto 50 
!--  EPS1 accuracy not reached, step halved, 
!--  return to the beginning of the step (at mark 50) 
!--  with the fixation that step splitting has occurred (NN=1) 
!-------------------------------------------------- 
!--  EPS1 accuracy achieved 
   60 if(E2*10..gt.E1) ID=1 
!-- evaluated the obtained accuracy: 
!--     satisfactory (ID=1), good (ID=0) 
!------------------------------------------ 
        S1=Y2(2)-Y0(2) 
    Y0N=Y0(NK+2);  Y2N=Y2(NK+2);    
    SN=Y2N-Y0N; IJ=0; IF(SN.gt.0.) IJ=1 
!--   Y0N - the value of the parameter h at the beginning of the step 
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!--   Y2N - the value of the parameter h at the end of the step 
!--   SN - the increment of the parameter h per step 
!--   S1 - increment of the 2nd component of the vector  
!--        of amplitudes per step 
!--    IJ=1 when there is movement along the h-characteristic in the  
!--       direction of increasing h  
!         and IJ=0 if it goes in the direction of decreasing 
!-------------------------------- 
!--    A decision is made regarding the need to specify the root, 
!        (checking if H1 is within last step) 
         if(Y0N.gt.H1.and.Y2N.gt.H1.or.Y0N.lt.H1.and.Y2N.lt.H1) goto 72 
          if(abs((H1-Y0N)/SN).gt.0.2) goto 61 
          Y1=Y0;  goto 63 
   61 if(abs((H1-Y2N)/SN).gt.0.2) goto 62 
          Y1=Y2;  goto 63 
   62 S=S*abs((Y0N-H1)/SN)*1.1; goto 50 
   63 L=L+1;   Y1(NK+2)=H1;  KI=1 
         write(*,*) 'Approximate solution is obtained' 
         write(1,64) 
   64 format(5X,40('-')) 
         write(1,77) 
   77 format(3X,'An approximate solution:') 
         call OUTP(KER(1),Y1,NK+2,K,NG,M,MK,0) 
        call NEWT(KI,EPS2,NIT)    !-- refinement of the root at h=H1 by Newton's method 
         write(*,*) 'the solution is specified by Newton"s method' 
         write(1,65)L,H1,NIT 
   65 format(1X,'specified value',I2,' root for h=',F5.3/ 
      & 2X,'(the solution was obtaind after',i3,'-nd iteration)') 
   KK=1;  if(KER(7).eq.0) KK=0 
   Call OUTP(KER(1),Y1,NK+2,K,NG,M,MK,KK) 
!--   Y1 - the specified value of the variables at the point h=H1 
   if(H1.ne.HM)goto 70 
         if(KER(7).eq.0) goto 68 
   write(1,67) 
   67 format(/5X,'taking into accaunt hysteresis') 
   AKER=KER(7) 
   do NI=1,KER(7) 
   AI=NI;  AL=AI/AKER;  call NEWT(KI,EPS2,NIT) 
   end do 
   call OUTP(KER(1),Y1,NK+2,K,NG,M,MK,0) 
   68 if(KER(9).ne.0) goto 69 
   return    !-- output taking into account hysteresis 
!-- increasing the number of harmonics taken into account 
   69 call IMPROVE(KER,K,KH,Y1,NK+2,NG,E,U,Y22,(KER(9)/KER(8)+1)*NK+2,EPS2,AL) 
         write(*,*) 'Increasing the number of harmonics that are taken into account is completed' 
   return  !-- output after the completion of increasing the number of harmonics 
   70 write(1,64) 
         if(Y2N.gt.HM) goto 250 
!------------------------------------ 
   72 If(KER(5).ne.1)goto 74 
         if(KH.eq.NK+2) then 
    write (1,75) Y2(NK+2) 
         else  
    write(1,73) Y2(NK+2),KH  
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         end if 
   73 format(/2X,'Parameter h=',F8.5,',  at this step variable ',I3,’ is independent’) 
   75 format(/2X,'Parameter h=',F8.5,',  at this step the parameter h  is independent ') 
   KK=1;   call OUTP(KER(1),Y2,NK+2,K,NG,M,MK,KK) 
!----- The OUTP procedure prints the value of the vector Y2  
!----    (if КЕR(5)=1) at the end of the step  
   74 Y0=Y2 
!-- end of step = start of next step 
!--   A decision is made regarding the necessity of inverting 
         if(KER(4).ne.0) goto 140 
         If(KH.ne.NK+2) goto 130 
          if(abs(PX1).le.abs(PX0)) goto 140 
            KH=2;   S=S1;   goto 140 
!-- the derivative of the 2nd component of the vector of variables by parameter h increases,  
!--  so we make the 2nd component an independent variable 
!-- and we move on to integration by the 2nd variable with step S1 
  130 if(abs(PH1).le.abs(PH0)) goto 140 
          KH=NK+2;  S=SN 
!-- the derivative of the parameter h by the 2nd component of the  
!-- vector of variables  
!-- increases, so we make parameter h an independent variable 
!-- and we return to the integration by parameter h with step SN 
!----------------------------------------------- 
!--  A decision is made to complete the integration 
  140 continue  
          if(Y0(NK+2).ge.HM) goto 250 
           if(KER(6).EQ.1.and.IJ.EQ.0) goto 230 
           if(Y0(NK+2).lt.0.) goto 210 
!-- exit the procedure if parameter h exceeds HM, 
!-- or there was a task to stop the calculation at 
!-- passing the first special point (KER(6)=1, h decreases), 
!-- or parameter h became negative 
             If(NN.eq.1.or.ID.eq.1) goto 40 
             S=S*2.5;   goto 40 
!-- We continue to calculate the h-characteristics (go to label 40): 
! with the same step (if there was step splitting in the previous step  
! (NN=1) or the accuracy of the stepwise integration is satisfactory  
! (ID=1). Otherwise, the step increases. 
!--------------------------------------------------- 
  210 write(1,220) 
  220 format(5X,'Parameter h has moved to the negative region') 
           write(*,*) 'Parameter h became negative' 
            return 
  230 write(1,240) 
  240 format(10X,'The first special point of the h-characteristics has been passed,' /10X, 'and therefore 
        &   a stop is provided (KER(6)=1)') 
   write(*,*) 'Passed first special point' 
  250  return 
!------------ 
   Contains 
    Subroutine NEWT(KI,EPS,NIT) 
!---------------------------- 
!-- The NEWT internal routine implements Newton's algorithm 
!-- solution of a nonlinear system of finite equations 
!-------------------------------------------------- 
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    integer,intent(in)::KI 
    real,intent(in)::EPS 
    integer::NIT  
         NIT=0 
    1 Call CALCULU(KER,KI,INEV,AL,Y1,F1,U,NK,K,NG,NG1,M,MK,E,KH) 
!-- Here, CALCULU determines the vector of corrections F1  
!-- by the value of the vector Y1 
!------------------------ 
          E1=0.; E2=0.; NIT=NIT+1;  Y1=Y1-F1 
            do i=1,NG 
                              E1=E1+Y1(i)**2; E2=E2+F1(i)**2 
                          end do 
          E1=sqrt(E1)*EPS;  E2=sqrt(E2) 
          If(NIT.gt.20) goto 2 
           If(E2.gt.E1) goto 1 
!----   EPS accuracy is achieved           
!--------------------------- 
    return 
    2  write(1,3) 
    3  format(10X,'The number of iterations during refinement',/10X,'of the root at the point h=H1 
exceeded 20') 
       write(*,*) 'Looping during refinement by Newton method' 
    stop 
      end subroutine NEWT 
      end subroutine HARMOSC 
 

             The HARMOSC  procedure is an improved version of the HINVNEWT  procedure described 
in [20], it has become more universal and provides: 
     - modeling (calculation) not only of forced oscillations, but also of parametric oscillations and 
self-oscillations; 
     - determination of all periodic solutions of a nonlinear system of differential equations, if there 
is more than one of them; 
      - the possibility of modeling in the presence of elements with nonlinear hysteresis 
characteristics; 
      - the possibility of modeling by increasing in the process of calculating the number of 
harmonics taken into account to determine their required number for the sake of modeling 
accuracy. 
            The  HARMOSC procedure is called for execution by the main program of the user 
software component package. It implements the algorithm for solving a nonlinear system of finite 
equations, which is a harmonic representation of a system of differential equations, the periodic 
solution of which is sought. 
            All parameters of the procedure are input, and before the procedure is called, they must 
receive a value according to its interface defined by the operator 

   Subroutine HARMOSC(K,Y0,E,NK,HM,H1,EPS1,EPS2,KER). 

           The first formal parameter is the variable  K  of integer type, it must be given the value of 
the order of the system of differential equations, the periodic solution of which is sought, this is 
the value of the variable   k  of the last component of the vector of the form (1.68). 
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           The second formal parameter is a one-dimensional real array of variables Y0, formed 
from simple k  vectors of amplitudes, the circular frequency  ω  of the fundamental harmonic, 
and the parameter h . The value given to it is the initial value of the variable array Y0. When 

0=h   modeling  forced oscillations, simple amplitude  vectors are zeroed (because the  −h
characteristic starts with zero harmonic amplitude values) and the value is set to ω . When 
modeling self-oscillations or parametric oscillations, it is necessary to set initial values to simple 
amplitude and frequency  ω  vectors, the values of which can be calculated using one of the 
approximate solution methods, for example, the harmonic linearization method, etc. 
           The third formal parameter is the composite vector of amplitudes  E   of the forcing force. 
It is given value only when calculating forced oscillations. For the case of parametric oscillations 
and self-oscillations, this vector is zeroed by the HARMOSC  procedure. 
           The fourth formal parameter is the NK variable of the integer type, it must be assigned 
the value of the size of the composite vector of amplitudes of the form (1.79) - (1.82). 
           The fifth formal parameter is a real HM  variable, which must be assigned the maximum 
value of the parameter  h   to which the   h -characteristics must be calculated. 
           The sixth formal parameter is the real variable H1, which must be assigned the value of 
the parameter  h   at which the solution must be refined by Newton's iterative method (when 
modeling self-oscillations and parametric oscillations, the parameters  HM  and  H1  must be set 
to the same value 1.0). 
          The seventh formal parameter is the real variable  EPS1, which must be given the value 
of the relative accuracy of the calculation   h -characteristic. 
          The eighth formal parameter is the real variable  EPS2, which must be assigned the value 
of the relative accuracy to which the refinement of the solution by Newton's iterative method 
must be performed. 
          The ninth formal parameter is an integer control vector  KER , which has 10 elements. 
They have the following content. 
          KER(1) – this variable is used to set the spectrum of a simple vector of amplitudes: if it 
includes a constant component and harmonics of both even and odd orders, then this variable 
must be assigned the number 0; if the simple vector of amplitudes is formed by the amplitudes 
of harmonics of odd orders only, then this variable must be assigned the number 1. It should be 
borne in mind that in those cases when it is not known for sure which of these two types of 
spectra is expected even before the calculation, it is better to set the number 0, and if only odd 
harmonics are present in the oscillatory process, then in the solution the relative amplitudes of 
other harmonics and constant components will be zero (close to zero). This will give reason to 
repeat the calculation by setting the variable  KER(1)  to 1. 
          KER(2) and KER(3) – these two variables are used to determine which form of the four 
predicted variants (1.64) – (1.67) the system of differential equations, the periodic solution of 
which is sought, has. If it fits into option (1.65) or (1.67), that is, when the variables whose 
periodic dependences are sought are directly under the derivative signs, then the variable KER(2) 
must be assigned the number 1, and if there are other variables under the derivative signs that 
are nonlinear functions from those whose periodic dependences are sought, then the number 0 
is assigned. If the system of differential equations fits into variant (1.64) or (1.65), that is, it is 
solved with respect to the derivatives (in the normal Cauchy form), then the variable KER(3) must 
be assigned the number 0, and the number 1 if the derivative vector is preceded by a square 
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matrix of coefficients (the system of differential equations is not solved with respect to the 
derivatives). The value of the variables KER(2) and KER(3) can also be determined according to 
the following table: 
  

A type of differential equation     KER(2)    (KER(3) 
          (1-64)       0       0 
          (1-65)       1       0 
          (1-66)       0       1 
          (1-67)       1       1 

 
           KER(4) – the value of this variable determines what kind of oscillations are sought: forced 
oscillations – the number 0; parametric oscillations – number 1; self-oscillation - number 2. 
          KER(5) – this variable controls the memorization of data during calculation h-
characteristics: if it is set to 0, only the results that will be remembered (written to the output file 
whose name is specified in the main user program) correspond to , and if you set 1, then the 
results will be remembered at each point h-characteristics. In some cases, it is advisable to 
remember the entire h-characteristic, because it is the one that is of interest (see further section 
4.1.3 – calculation of the characteristic of the ferroresonant circuit). It may also be useful to 
remember it in the case of an abnormal completion of the calculation and the need to analyze 
its causes. 
            KER(6) – this variable determines whether the calculation of characteristics should be 
continued if its first special point has already been passed (see section 1.5.7): if this variable is 
assigned the number 0, then after passing the first special point, the calculations will continue. 
          KER(7) – this variable specifies the features of the calculation when the problem has 
nonlinear hysteresis characteristics. If this variable has a value of 0, it means that the problem 
does not have such characteristics. If this variable has the value of a positive integer (for 
example, 5), then this will mean that the problem has such characteristics, and this integer 
determines the number of steps for expanding the hysteresis loops when refining the solution 
from zero area to the real one. 
          KER(8) – the value of this variable determines the number (order) of the highest harmonic 
taken into account, this is the value in formula (1.8). 
         KER(9) – this variable specifies the features of the calculation in which the number of 
harmonics taken into account is increased. If KER(9) is assigned the number 0, then the 
increment of this quantity does not occur, and if it is assigned a number other than zero and 
greater than that assigned to the variable KER(8), then the increment occurs from the value of 
the variable KER(8) to the value of the variable KER( 9) with step 1. 
          KER(10) is a variable that controls the recording of results to the output file when increasing 
the number of harmonics taken into account. If its value is 0, then only the results are recorded 
when the harmonic number reaches the value of the KER(9) variable, and if its value is 1, then 
the results are recorded after each build-up. 
          The procedure implements the algorithm for solving a nonlinear system of finite equations 
of the form (1.77) or (1.83) or (1.84) or (1.85), which is a harmonic representation of a system of 
differential equations whose periodic solution is sought. 
          Note that the limitation of the forms of recording of the systems of differential equations 
under consideration to the forms (1.64) - (1.67) relieves the user of this procedure of the need 
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to perform the harmonic algebraization operation, because it is embedded in the algorithm 
implemented by the procedure. 
           Let us briefly describe this algorithm. 
           First of all, based on the given initial value of the vector of variables   *X



of the form 
(1.89), which is stored in the one-dimensional array Y0, the value of the vector of residua (1.97) 
is calculated - it is calculated by the CALCULU procedure called for execution (it is described 
further), the value of the vector of residua is memorized by a one-dimensional  U  array. 
           Next is the calculation of the h-characteristic - the integration of the vector differential 
equation of the form (1.102) is performed using the Kutt-Merson numerical method [48] with 
automatic selection of the step size. At the same time, the step size is changed so that the 
relative accuracy of the EPS1 calculation is satisfied. Integration is performed when the 
parameter changes from zero to the value that the HM  variable has. 
           Before starting the Kutt-Merson algorithm, this procedure includes the first two small 
steps with the step length value  0005,0=∆h , which are performed according to the Euler 
method without accuracy control. This is due to the fact that in some tasks, in particular when 
calculating periodic processes in nonlinear electric circuits with valves, at the first step of the 
calculation h-characteristics, when it is determined at which nodes in the period the valves are 
open and at which they are closed, the Kutt-Merson algorithm with accuracy control without such 
an introduction can lead to unjustified splitting of the step. 
           When calculating parametric oscillations or self-oscillation, the value of the variables H1 
and HM  is set, as already shown, to be the same and equal to one, then the last point of the h-
characteristic is specified according to Newton's iterative method [44, 48]. When calculating the 
forced oscillations, the values of the changed H1  and HM  can also be the same and have equal 
units, then the solution is refined at the full value of the forcing force. However, they can be 
different, while the value of the variable H1 must be smaller than the value of the variable HM. 
For example, if the H1 parameter is assigned a value of 0.4 and the HM  parameter is assigned 
a value of 0.9, then the procedure will calculate the h-characteristic in the range from  0=h   to  

9.0=h   and at 4.0=h   specify the solution (or solutions, if there is more than one in this 
range) according to Newton's method. 
           Once again, we emphasize the possibilities of the procedure. 
           1) The algorithm of the HARMOSC  procedure provides for the possibility of inverting the 
solvable system of differential equations (1.102) during the calculation of forced oscillations in 
order to ensure the passage of special h-characteristic points, if any, during numerical 
integration. The inversion algorithm is described in section 1.5.7. When inverting, the 
independent variable – the parameter h – becomes the dependent variable, and the independent 
variable becomes the second component of the vector of variables  *X



. 
          2) The HARMOSC procedure assumes the possible presence of nonlinear hysteresis 
characteristics in the problem. If they are present (while the KER(7) element is non-zero), the 
solution is first obtained assuming that all characteristics of the hysteresis form are replaced by 
single-valued averaged characteristics that pass through the middle of the hysteresis loops. After 
obtaining this initial solution, the hysteresis loops are gradually expanded to their full values - 
the number of expansion steps is given by KER(7). After each expansion, the solution is refined 
using Newton's method, while the value of the root of the previous stage of expansion is taken 
as the zero approximation. 
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           3) The HARMOSC procedure also provides for the possibility of refining the obtained 
solution by increasing the number of harmonics taken into account. If this option is selected, the 
value of the KER(9) element must be non-zero. Then the value of KER(9) is perceived as the 
maximum value of the number of the highest harmonic when increasing the number of 
harmonics taken into account (before the number of harmonics taken into account was 
increased, a solution was obtained in which the number of the highest harmonic was given by 
the value of the KER(8)  element). 
           During its work, the HARMOSC procedure invokes four external procedures: SNCS 
(calculates the values of the matrices of harmonic transformations), CALCULU (calculates the 
values of the vector of discontinuities, derivatives or corrections, described later), IMPROVE 
(implements the algorithm for increasing the number of harmonics taken into account, described 
later) and OUTP (processes the results and writes them to a separate file for subsequent printing) 
and one internal procedure NEWT, which implements Newton's iterative algorithm for refining the 
solution.  

2.2.3.2.  Procedure  CALCULU 
           Text of the procedure: 

       Subroutine CALCULU(KER,KI,INEV,AL,X,DX,U,NK,K,NG,NG1,M,MK,E,KH) 
!--  CALCULU procedure: 
!--   at INEV=1 by the value of vector X with size NK+2 determines  the vector of discontinuities and assigns 
!--     its value to the vector DX; 
!--  at INEV=0 and KI=0 calculates the value of the vector X  vector of derivatives DX with size NK+2 and  
!--     divide all components  of this vector to its KH-th component; 
!--   at INEV=0 and KI=1 by the value of the vector X determines vector of corrections DX for refinement of  
!--       the solution by Newton's method. 
!-------------------------------------------------- 
   Implicit none 
  integer,intent(in)::KI,INEV,K,NG,NG1,M,NK,MK,KH 
  real,intent(in)::AL 
  integer,dimension(10),intent(in)::KER 
  real,dimension(NK+2),intent(in)::X 
  real,dimension(NK),intent(in)::E 
  real,dimension(NK+1)::U,Y1 
  real,dimension(NK+2),intent(out)::DX 
  real,dimension(NK)::XG,Y,Z,Y11,Y2 
  real,dimension(NK,NK)::SY,SZ,SY1,SY2 
  real,dimension(NK+1,NK+2)::A 
  real,dimension(MK)::XC,YC,ZC 
  real,dimension(MK,K)::ZXC,YXC 
  real,dimension(K,K)::B 
  real::CC,OM,H 
  integer::i,j,IG,INFK,IA 
!-------------------------------- 
!--   Procedure parameters: 
!--   KER - an array of control variables 
!--   KI,INEV - control variables 
!--   AL - the narrowing coefficient of the characteristic loop of the hysteresis form 
!--   X  - a vector of variables 
!--   DX - vector of increments or corrections 
!--   U  - a non-coherent vector for the initial approximation of X 
!--   NK - the size of the composite amplitude vectors; 
!--  K  -  the order of the system of differential equations being solved; 
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!--  NG - size of simple amplitude vectors; 
!--  NG1 - the number of amplitudes to the 2nd harmonic; 
!--  M - size of simple nodal vectors (number of nodes per period or half-period); 
!--  MK - the size of the composite nodal vectors; 
!--  E  - a composite vector of forcing force amplitudes; 
!--  KH - the number of the independent variable in the vector of variables 
!--------------------------- 
  IG=KER(1); INFK=KER(2) ;IA=KER(3); OM=X(NK+1)   
!------ OM - circular frequency of the fundamental harmonic 
   do i=1,NK 
                    XG(i)=X(i) 
   end do    !-- XG - composite vector of amplitudes 
      call KVGVS(K,XG,NG,NK,XC,M,MK) 
!--- calculated the value of the composite nodal vector XC 
  call Model(AL,M,K,MK,XC,YC,ZC,YXC,ZXC,B) 
!--- calculated composite nodal vectors YC,ZC and matrices YXC,ZXC 
           if(INFK.eq.1) goto 50 
      call GRMAT(IG,SY,NK,YXC,MK,K,M,NG,NG1) 
   50 Call GRMAT(IG,SZ,NK,ZXC,MK,K,M,NG,NG1) 
!--  calculated the matrices of differential harmonic parameters SY, SZ 
  if(INEV.eq.1) goto 70 
  A=0.;           !-- zeroed the matrix A 
        if(INFK.ne.1) goto 60 
        SY=0. 
           do i=1,NK 
               SY(i,i)=1. 
           end do 
   60 call OMAB(IG,SY,SY1,NG,K,NK,OM) 
    if(IA.ne.1) goto 61 
   SY2=SY1;  call MBDMM(B,K,SY2,SY1,NG,NK) 
   61   do i=1,NK 
              do j=1,NK 
                A(i,j)=SY1(i,j)+SZ(i,j) 
 end do 
           end do 
!---   the main block of matrix A is formed 
!------------------------------------------ 
!---   we calculate the gaps 
   70 if(INFK.eq.1) goto 71 
   call KVSVG(K,YC,M,MK,Y,NG,NK) 
   71 call KVSVG(K,ZC,M,MK,Z,NG,NK) 
!--- calculated the values of the vectors of amplitudes Y and Z  
    Y11=Y;    if(INFK.eq.1) Y11=X 
!--- calculated values of amplitude vectors: 
!------ Y11 is a composite vector of amplitudes Yr or Xr 
!------ Z is the composite vector of amplitudes Zr 
          call OMVB(IG,Y11,Y,NG,K,NK,OM) 
!------ Y is the product OM*D*Y1 
  if(IA.ne.1) goto 72 
  Y11=Y;  call MBDMV(B,K,Y11,Y,NG,NK) 
   72 continue 
!------ Y is the product OM*D*Y1 or Bг*OM*D*Y1 
         H=X(NK+2);   if(INEV.eq.1) H=1. 
            do i=1,NK 
          Y1(i)=Y(i)+Z(i)-E(i)*H 
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          Y2(i)=Y(i)/OM 
           end do 
   Y1(NK+1)=0.; if(KER(4).eq.2) Y1(NK+1)=X(2) 
!------ Y1 is a vector of residua 
!------ Y2 is a vector D*Y1 
       if(INEV.ne.1) goto 800 
   do i=1,NK+1 
        DX(i)=Y1(i) 
   end do 
  return 
!------ calculated the residua 
  800 do i=1,NK 
              A(i,NK+1)=Y2(i) 
          end do 
  if(KER(4).eq.2) goto 801 
  A(NK+1,NK+1)=1.; goto 802 
  801 A(NK+1,2)=1. 
  802 if(KI.eq.1) goto 803 
!--- to calculate increments 
         do i=1,NK+1 
     A(i,NK+2)=-U(i) 
         end do;  goto 804 
!--- to calculate corrections 
  803 do i=1,NK+1 
             A(i,NK+2)=Y1(i) 
          end do 
  804 continue 
          call SYS(A,NK+1,NK+2) 
!--  a system of linear equations is solved 
       do i=1,NK+1 
          DX(i)=A(i,NK+2) 
       end do 
      If(KI.eq.1) goto 44 
  DX(NK+2)=1. 
!--- divide by the KH-th component (inversion): 
       CC=DX(KH);  DX=DX/CC 
        return 
   44 DX(NK+2)=0. 
         return 
  Contains 
    Subroutine MBDMV(B,K,X,Y,N,KN) 
! Multiplication procedure block matrix 
! of the form (1.86) on the composite vector of amplitudes X 
!----------------------- 
    integer,intent(in)::K,N,KN 
    real,dimension(K,K),intent(in)::B 
    real,dimension(KN),intent(in)::X 
    real,dimension(KN),intent(out)::Y 
    integer::i,j,L,iNL,LjK 
!--------------- 
!-- Input values: 
!-- B(K,K) is a square matrix of coefficients 
!-- X(KN) is a composite vector of amplitudes 
!-- Output value: 
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!-- Y(KN) is a composite vector of amplitudes - the result 
!---------------------------------- 
    do i=1,K 
      do L=1,N 
         iNL=(i-1)*N+L; Y(iNL)=0. 
            do j=1,K 
               LjK=L+(j-1)*N  
               Y(iNL)=Y(iNL)+B(i,j)*X(LjK) 
            end do 
      end do 
    end do 
    return 
    end Subroutine MBDMV 
!--------- 
    Subroutine MBDMM(B,K,X,Y,N,KN) 
! Multiplication procedure block matrix 
! of the form (1.86) - on the composite matrix X 
!----------------------- 
    integer,intent(in)::K,N,KN 
    real,dimension(K,K),intent(in)::B 
    real,dimension(KN,KN),intent(in)::X 
    real,dimension(KN,KN),intent(out)::Y 
    integer::i,ig,j,L,Lg,iNL,jNL,LjK 
!--------------- 
! Input values: 
! B(K,K) is a square matrix of coefficients 
! X(KN,KN) is a composite block matrix of K*K blocks, 
! each block is a matrix of dimension N 
! Output value: 
! Y(KN,KN) - matrix - result 
!---------------------------------- 
  do ig=1,K 
                 do i=1,K 
      do Lg=1,N 
        jNL=(ig-1)*N+Lg 
         do L=1,N 
           iNL=(i-1)*N+L; Y(iNL,jNL)=0. 
             do j=1,K 
             LjK=L+(j-1)*N  
             Y(iNL,jNL)=Y(iNL,jNL)+B(i,j)*X(LjK,jNL) 
             end do 
          end do 
       end do       
     end do 
                 end do 
    return 
    end Subroutine MBDMM 
           end Subroutine CALCULU 

 
             The  CALCULU  procedure is called to execute the  HARMOSC procedure described in 
the previous section and the IMPROVE procedure described later. 
             The CALCULU  procedure implements the algorithms 1.6 and 1.7 described in section 
1.5.5 - based on the given value of the X  vector (composite vector of the amplitudes of the 
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unknown  x  and the circular frequency ω ) using the instantaneous process model on the 
period (or half-period) calculates: 
            1) the value of the vector of residual (1.97), if the control variable INEV  has a value of 1, 
or 
             2) the value of the derivatives according to the parameter h  of the unknown 
components of the vector at the step of numerical integration, if the control variables  INEV  and 
KI  have the value 0,  or 
             3) the value of corrections to refine the solution according to Newton's method, if the 
control variable  INEV  has a value of 0 and the control variable KI  has a value of 1. 
            This procedure is focused on systems of differential equations exclusively in the writing 
forms (1.64) - (1.67). 
            The CALCULU procedure when executed calls the KVGVS, KVSVG, OMAB, OMVB and 
GRMAT procedures described in the previous sections from the corresponding block of standard 
software components of the DHM-S, the SYS procedure for solving systems of linear equations 
(it is given below in this chapter) and the Model procedure from block of user software 
components (it specifies an instantaneous process model for a period or a half-period). 
            If the procedure works according to the second option, then the values of the derivatives 
of the components of the unknown vector calculated at the integration step are divided by the 
derivative component of the variable that is the independent variable at this step. This is how 
the inversion of the system of differential equations described in section 1.5.7 is carried out. 
            The CALCULU procedure contains two internal subroutines - the MBDMV subroutine, 
which performs the operation of multiplying a block matrix of the form (1.86) by a composite 
vector of amplitudes - see formulas (1.84) and (1.85), and the MBDMM subroutine, which 
performs the operation of multiplying a block matrix of the form (1.86) by a composite matrix - 
see formulas (1.110) and (1.111). The routines  MBDMV and MBDMM are called for execution 
only when the control variable KER(3) has the value 1, that is, when a periodic solution (or 
periodic solutions) of the differential equations of the form (1.66) or (1.67) is sought. 
            At the end of the description of the CALCULU  procedure, it is necessary to pay attention 
once again that it is focused on the system of differential equations exclusively in one of the 
forms of writing (1.64) - (1.67). Harmonic algebraization of differential equations of these forms 
is already embedded in it. That is why when using this procedure, the volume of preparatory 
work of the user is minimal - he only needs to develop his Model  procedure for a specific type of 
system of differential equations. If this system of equations does not fit into any of the forms of 
writing (1.64) - (1.67), then the user must develop his own CALCULU procedure, having 
previously performed the harmonic algebraization of the system of differential equations, the 
periodic solution of which is sought, and then this procedure from Block 3  DHM-S is transferred 
to the block of user software components. 
            The need to develop a variant of the CALCULU  procedure may also arise when the user 
wants to use some additional capabilities of the method, for example, taking into account the 
symmetry of a periodic process in a multiphase electrical circuit [15, 17, 20] or the same 
symmetry in other oscillations, if they are there, - to reduce the number of unknown harmonic 
amplitude vectors in order to minimize the required amount of computing resources. 
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2.2.3.3. Procedure  IMPROVE 

            In order for the trigonometric series of the form (1.8) reproduced by the found vector   
*X


 to approximate the time dependence of the variables in the periodic solution of the 
nonlinear system of differential equations with the necessary accuracy, it is necessary to take 
into account the appropriate number of harmonics. For the most part, in engineering calculations 
of nonlinear oscillations in systems and devices, this number of harmonics is not too large. 
             Practically, establishing the required dimension of the amplitude vectors (in other words, 
the number of harmonics that must be taken into account) can be carried out by means of a 
numerical experiment, increasing the number of harmonics taken into account. This increase 
can be done in different ways, for example, as follows. 
              The first approximation for the iterative process according to scheme (1.112), 
calculated by the h -characteristics method, should be sought when taking into account a small 
number of harmonics. So, let  n = 3  be taken to obtain the first approximation of the sought-
after periodic solution of the system of differential equations, and after refinement according to 
the scheme (1.112), the vector of amplitudes  ГX



 corresponding to one of the variables, for a 
given value  n , has the form 
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            We increase  the number  of harmonics  taken into account  by one,  that is,  we take  
n = 4, and as a first approximation for the iterative scheme (1.112) we take the value of the 
vector of amplitudes  
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which has two more components and the last two added components have zero values. After 
the appropriate number of iterations of the solution refinement algorithm by Newton's method, 
the last two components receive numerical values and the other components slightly change 
their values. 
           After that, we again increase the number of components of the amplitude vector  ГX



by 
two components and specify the value of the vector. We continue to increase the number of 
harmonics that are taken into account in this way until the predetermined maximum number of 
taken into account harmonics is reached. 
          This algorithm for increasing the number of considered harmonics is implemented by the 
IMPROVE  procedure, the text of which is given below. 
 

        Subroutine IMPROVE(KER,K,KH,Y1,N11,NGP,E1,U,Y2,N12,EPS,AL) 
!--   The procedure for increasing the number of considered harmonics 
!--   in the sought-after periodic solution of a nonlinear system of differential equations 
!------------------------ 
       Implicit none 
   integer,intent(in)::K,NGP,N11,N12,KH 
   integer,dimension(10),intent(in)::KER 
   real,intent(in)::EPS,AL 
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   real,dimension(K*NGP),intent(in)::E1 
   real,dimension(N11),intent(in)::Y1,U 
   real,dimension(N12),intent(out)::Y2 
   real,dimension(N12)::Y20 
    real,dimension(N12-2)::E2,E20 
   real,dimension(N12)::F2 
   real::S1,S2,H1,OM 
   integer::M,MK,i,j,NIT,NB,NBP,NG,NG1,NG0,NK,NKR,IG,N1,KK 
!------------------- 
!--   Procedure parameters: 
!--   KER is an array of control variables, in it: 
!--   KER(8) - the number of the highest harmonic before building up; 
!--   KER(9) - the number of the highest harmonic to follow build harmonics; 
!--   K - the order of the solvable system of differential equations; 
!--   KH - the number of the independent variable in the vector of variables 
!--  Y1 - a composite vector of the amplitudes of the solution to build-up 
!--   N11 - the number of elements of the vector Y1 
!--   NGP - the initial value of the size of the simple vector of amplitudes; 
!--   E1 - composite vector of forcing force amplitudes; 
!--   U - a vector of entanglements 
!--   Y2 - the original (refined) composite vector of solution amplitudes; 
!--   N12 - the number of elements of the vector Y2 
!--   EPS - relative precision for refinement 
!--   AL - narrowing coefficient of the hysteresis loop 
!-------------        
         write(1,110) KER(8),KER(9) 
  110 Format(1X,'Refinement of the value of the root by increasing the number of harmonics from 
N=',I2,' to N=',I2) 
      NG0=NGP;  IG=KER(1) 
     Y20=0.;   E20=0. 
   do i=1,N11 
      Y20(i)=Y1(i) 
   end do 
   do i=1,N11-2 
     E20(i)=E1(i) 
   end do   
   H1=Y1(N11);  OM=Y1(N11-1) 
   NKR=1;  if(IG.eq.1)NKR=2 
   NBP=KER(8)+1;   if(IG.eq.1)NBP=KER(8)+2 
!--   a cycle in which the number of considered harmonics is increased 
      do NB=NBP,KER(9),NKR 
    call SNCS(IG,NB,NG,NG1,M) 
!-- calculated new values ??of matrices of harmonic transformations 
    NK=K*NG; N1=NK+2; MK=M*K 
    Y2=0.; E2=0. 
    do i=1,K  
       do j=1,NG0 
          Y2((i-1)*NG+j)=Y20((i-1)*NG0+j) 
          E2((i-1)*NG+j)=E20((i-1)*NG0+j)                   
       end do 
    end do 
          Y2(N1)=H1;  Y2(N1-1)=OM;  NIT=0 
  300  Call CALCULU(KER,1,0,AL,Y2,F2,U,NK,K,NG,NG1,M,MK,E2,KH) 
!-- The CALCULU procedure determines the value of the Y2 vector 



91 
 

!--    vector of corrections F2 for refinement of the solution according to Newton's method 
          S1=0.; S2=0. 
          NIT=NIT+1;   
    do i=1,N1 
        Y2(i)=Y2(i)-F2(i) 
    end do 
   S1=Y2(NG-1)**2+Y2(NG)**2 
   S2=F2(NG-1)**2+F2(NG)**2 
             S1=sqrt(S1)*EPS;  S2=sqrt(S2) 
             If(NIT.gt.20) goto 320 
!-- if looping, then emergency exit (at mark 320) 
             If(S2.gt.S1) goto 300 
!-- if the accuracy is worse than EPS, then go to the next iteration 
!-- (at mark мітку 300) 
    do j=1,N1 
       Y20(j)=Y2(j) 
    end do; 
    do j=1,NK 
       E20(j)=E2(J) 
    end do 
  NG0=NG 
  if(KER(10).eq.0.and.NB.ne.KER(9)) goto 310 
  write(1,305)NB 
  305 format(/1X,'added ',i2,'harmonic') 
  KK=1; if(NB.eq.KER(9))KK=0 
  call OUTP(KER(1),Y2,N1,K,NG,M,MK,KK) 
  310 continue 
  end do 
!-- the end of the cycle of increasing the number of harmonics 
   return 
  320 write(1,321)NB 
  321 format(10X,'Number of iterations when joining', I2,'-th harmonic exceeded 20') 
          write(*,*)'looping in the IMPROVE procedure' 
          stop 
         end  subroutine IMPROVE 

            
           The formal parameters of the procedure are described in the comments. 
           The procedure IMPROVE when executed calls the procedures SNCS (called after each 
change of value n ), CALCULU  and  OUTP. 

                                                            *   *   * 
           It is possible to increase the number of harmonics considered in larger increments than 
what is included in the IMPROVE procedure, for example two at a time. 
           The number of harmonics taken into account can also be increased in the direction of 
decreasing numbers of their orders, that is, subharmonics can also be taken into account. So, if 
we consider the first subharmonic with circular frequency 2/ω , then it should be considered 
as a new first, while setting at the levels (1.77), (1.83), (1.84) or (1.85) a new value of the circular 
frequency equal to 2/ω ,, and at the same time former first harmonics of all variable values 
and forcing forces should be called other harmonics, second thirds, etc. 
           It should be noted that when increasing the number of taken into account harmonics of 
variable values, it is important not to fall out those harmonics on which the phenomenon of 
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resonance may occur. Ignoring resonant harmonics can significantly reduce the accuracy of the 
obtained periodic solution. 
           The remarks stated above after the asterisks are not implemented in the IMPROVE 
procedure. If the user wants to modify this procedure, he can use the mentioned comments. 

                                               2.2.4. The fourth program block  
 
           To this block (Block 4 in the DHM-S) we will assign procedures that implement operations 
that are not operations of the differential harmonic method, but are general and can be used in 
other tasks. In this sense, the block, although included in the DHM-S, actually does not belong 
to it. 
           To begin with, we will introduce two procedures to this block: SYS for solving systems of 
linear algebraic equations and  INTLIN  for linear interpolation from tables that specify hysteresis-
free magnetization curves of ferromagnetic materials. 
           It is suggested that the user in his work also refers to this block his own procedures of a 
general nature and application. 
                                                  
                                                 2.2.4.1.  Procedure SYS 
            Text of the procedure: 

        Subroutine SYS(B,KY,KV) 
!--   Procedure for solving a system of linear equations 
!--   by the Gaussian method with the selection of the main element. 
!--   B - extended matrix of coefficients with dimensions KY*KV. 
!--   The result is located in the far right column in place of free members 
!------------------------------------------ 
 integer,intent(in)::KY,KV 
              real,dimension(KY,KV)::B 
 real::C1,C4 
 integer::L,i,j,K,L1 
      do L=1,KY 
          C1=0.0 
        do i=L,KY 
           C4=ABS(B(i,L)) 
           if(C4.GT.C1) goto 2 
           goto 3;  
    2      K=i;  C1=C4 
    3   end do 
              do j=L,KV 
                C1=B(K,j); B(K,j)=B(L,j); B(L,j)=C1 
 end do 
        K=L+1 
        do j=K,KV 
           B(L,j)=B(L,j)/B(L,L) 
        end do 
          if(K.GT.KY) goto 7 
               do i=K,KY 
                     do j=K,KV 
                   B(i,j)=B(i,j)-B(i,L)*B(L,j) 
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         end do 
      end do 
       end do       
    7 do L=2,KY 
          j=KY-L+2; K=j-1 
            do L1=1,K 
              i=K-L1+1 
              B(i,KV)=B(i,KV)-B(i,j)*B(j,KV) 
            end do 
      end do 
      return 
      end subroutine SYS 
 
           The SYS  procedure implements the well-known algorithm for solving a system of linear 
equations according to the Gauss scheme with the selection of the main element [48]. 
           This procedure could not be included in the DHM-S, and in programs for determining 
periodic solutions of nonlinear differential equations, a similar procedure from a package of 
standard subroutines of one or another library could be used. Its presence in the DHM-S 
assumes the case when such a package of standard routines is unavailable to the user for one 
reason or another. The presence of this procedure in Block 4 increases the autonomy of the 
DHM-S. 
          Before applying this procedure, all its formal parameters must be given values, in 
particular, parameter B - the value of the extended matrix of coefficients (free terms of the 
equations - in the far right column), KY - the order of the system (the number of scalar equations 
in the system), KV - the number of columns matrix B (KV=KY+1). The procedure places the 
solution (the value of the unknown system of linear equations) in the far right column, in the 
places of the free terms (the right-hand sides of the equations). 

 
2.2.4.2.  Procedure for linear interpolation magneti curve  

                 Text of the procedure: 
      Subroutine INTLIN(X,Y,YX,X1,DX,XT,M) 
!--  The procedure of linear interpolation of the magnetization curve 
!--  X - abscissa; Y - ordinate; YX - a derivative 
!--  XT(M) - the table for the non-linear part 
!--  X1 - the initial abscissa of the non-linear part 
!--  DX - table step 
!------------------------- 
 Implicit none 
 integer,intent(in)::M 
 real,intent(in)::X,X1,DX 
 real,dimension(M),intent(in)::XT 
 real,intent(out)::Y,YX 
 integer::j 
 real::AX,ZX,XM 
      ZX=sign(1.,X); AX=abs(X) 
      If(AX.GT.X1) goto 1 
!   Initial linear part 
      YX=XT(1)/X1; Y=ZX*YX*AX 
       return 
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    1  XM=X1+(M-1)*DX 
  if(AX.ge.XM)goto 2 
!-------------------- 
!   The non-linear part 
     j=(AX-X1)/DX+1 
  YX=(XT(j+1)-XT(j))/DX 
  Y=ZX*(XT(j)+YX*(AX-(X1+(j-1)*DX))) 
  return 
!------------------------ 
!  The final linear part 
    2 YX=(XT(M)-XT(M-1))/DX 
        Y=ZX*(XT(M)+YX*(AX-XM)) 
        return 
        end subroutine INTLIN 
 

          This procedure is intended for interpolation from the table, which specifies the hysteresis-
free characteristic of magnetization - for example, the dependence of the magnetic field induction 
in a ferromagnet on its stress or the dependence of the flux-coupling of a coil with a 
ferromagnetic core on its current. It is assumed that this curve is set only for positive values of 
the abscissa (the curve is symmetric odd) and is divided into three parts: the initial linear, which 
passes through the origin, the curvilinear (knee) and the final linear (after the saturation knee). 
With such a breakdown, only the nonlinear part is numerically displayed: it is necessary to set 
the value of the abscissa (voltage or current) of the beginning of the nonlinear part - X1, the step 
between nodes (nodes equidistant) - DX, the number of table nodes - M and the table of ordinate 
values (induction or flux linkage) in the nodes - XT. At the same time, the first node of the table 
is the junction point of the initial linear part and the non-linear part (knee), the penultimate node 
is the junction point of the non-linear part with the final linear part; the last node also lies on the 
terminal line segment. 
           The algorithm by which the procedure works is as follows. 
           If the given value of the abscissa X (by absolute value) is smaller than X1, then the 
extrapolation is carried out along a straight line passing through the origin and the first node of 
the nonlinear part of the magnetization curve. If the given value of the abscissa X goes beyond 
the non-linear part to the right, then the extrapolation is carried out along a straight line drawn 
through the last two nodes of the table (the penultimate node completes the non-linear part and 
the last one lies on the linear part). If the given value of the abscissa X  is within the nonlinear 
part of the magnetization curve, then the two nearest nodes are determined, a straight line is 
drawn through them, and interpolation is carried out behind it. 
           The found value of the ordinate Y is assigned the sign of the abscissa  X. The value of 
the derivative is calculated as the tangent of the angle of inclination of the corresponding 
segment of the broken line approximating the magnetization curve, and its value is assigned to 
the formal parameter  YX 
. 
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                                                                 Chapter 3 
                                METHODOLOGY OF NUMERICAL MODELING  
                                            OF NONLINEAR OSCILLATIONS 

 
           In this chapter, we will consider the method of creating a numerical model of nonlinear 
oscillation using the theoretical provisions of Chapter 1 and the DHM-S described in Chapter 2. 
           First of all, let us emphasize that we will be talking about models that correspond to 
systems of differential equations exclusively of the forms (1.64) - (1.67). 
           Creation of a numerical model of nonlinear oscillations involves the following stages. 
           1. Writing the system of differential equations describing the oscillating system and 
reducing it to one of the forms (1.64) - (1.67). 
           2. Analysis of system nonlinearities from the point of view of the classification described 
further in section 3.2.1. If among the nonlinearities there are those belonging to the second 
and/or third groups, and they differ from those considered further in sections 3.2.1.1 and 3.2.1.2, 
then for these nonlinearities it is necessary to develop instantaneous models on a period (semi-
period), for example those given in sections 3.2.1.1 and 3.2.1.2, and implement their 
programmatic implementation, and attach the developed procedures to Block 5 of the DHM-S. 
           3. Development of a block of user software components for this task (see Fig. 2.1). This 
block includes: 
           - the main program; 
           - the Model procedure, which implements an instant mathematical model of the process 
on a period (semi-period); 
           - the OUTP procedure, which implements the algorithm for processing the results and 
writing them to the output file. 
           Regarding the last procedure. If the user is satisfied with the level of processing of the 
results implemented by the standard OUTP procedure described below in section 3.3 (it is 
assigned to Block 5 of the DHM-S), then the user does not have to create his own version of this 
procedure. The need for its development arises when larger-scale processing of the results is 
required, for example, analysis of the stability of the obtained solution, construction of graphs 
and tables, etc. 

                                  
                                 3.1. Structure of the main program 

           The purpose of the main program is input of input data, their initial processing and 
organization of transmission to the HARMOSC  and  Model  procedures and the call to execute 
the HARMOSC procedure. 
           In the descriptive part of the program, it is necessary to describe: 
           a) a real one-dimensional array that stores the value of the vector of variables of the form 
(1.89), and the last element of the array is the value of the parameter h ; 
           b) a real one-dimensional array for the composite vector of forcing force amplitudes of 
the form (1.81); 
           c) a whole one-dimensional array for the control vector KER, which has 10 elements; 
           d) a set of real and integer simple variables and arrays, which are necessary to transfer 
information to the HARMOSC and  Model  procedures. 
           The descriptive part ends with a description of the shared memory area, which should 
ensure the transfer of part of the data from the main program to the Model  procedure. 
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           The input data entered by the main program from the input file is divided into two parts: 
           1) data to be passed to the HARMOSC procedure (passed through formal parameters); 
           2) data that needs to be transferred to the Model procedure (this includes, among other 
things, information about non-linear relationships in the system) in ways other than the way of 
transfer through formal parameters. In all the following examples, this is a transfer using common 
memory areas (Common). 
          In the part of the program where the primary processing of the entered data is performed, 
it is necessary to call the SizesV procedure (described later in this section, included in Block 5 of 
the DHM-S), which determines the sizes of the simple and compound amplitude vectors, the 
values of which are necessary for the formation of the compound vector of amplitudes of the 
forcing force and the initial value of the vector of variables, and are added to the information to 
be passed to the HARMOSC procedure. There, an initial value *

0X


 (see formula (1.97)) is 
assigned to the sought-after vector of variables (its components are the composite vector of 
amplitudes of the form (1.82), the circular frequency  ω  of the fundamental harmonic, and the 
parameter h ) and a value is assigned to the composite vector of amplitudes *

ГE


  of the form 
(1.81) of the forcing force ( in the case of forced oscillations). 
           In the final part of the main program, after all the formal parameters of the HARMOSC 
procedure have already been assigned the required values (see section 2.2.3.1 for a description 
of its formal parameters), this procedure is called for execution.  
           An example of the text of the main program: 

        Program Main 
        Implicit none 
        real,dimension(14)::X 
        real,dimension(12)::E 
        integer,dimension(10)::KER 
        real::A,B,C,OM,EPS1,EPS2,H1,HM 
        integer::K,NG,NK 
       common/MP/A,B,C      !--- shared area with the Model procedure 
!--- Entering data from an input file 
       open(1,File='DaniIn.dat',status='old') 
       read(1,*)A,B,C,Ec 
       read(1,*)OM,EPS1,EPS at whytch the root 2,H1,HM 
!-----  A,B,C – data to pass to the Model procedure 
!-----  Ec – the amplitude of the forcing force 
!-----  OM – circular frequency 
!-----  H1 – the value of the  h  parameter at which the root must be specified 
!-----  HM – the maximum value of the parameter h 
!-----  EPS1 – accuracy of h-characteristic calculation 
!-----  EPS2 – accuracy for Newton’s method 
         read(1,*)KER    !---  KER – the array of control variables 
         read(1,*)K        !---  K – the order of the system of differential equations 
         close(1) 
!--- Output of input data to the output file 
         open(1,file='DataOutp.dat') 
         write(1,1) 
    1 format(4X,'Entered data:') 
       write(1,2)A,B,C,Ec 
    2 format(2X,' A = ',E10.4,' B =',E10.4, ' C = ',E10.4, ' Ec = ',E10.4) 
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        write(1,3)OM,EPS1,EPS2,H1,HM 
    3 format(2X,' OM=',E10.4,' EPS1=',E10.4,' EPS2=',E10.4,' H1=',E10.4,' HM=',E10.4) 
        write(1,5)KER 
        Write(1,4)K 
    4 format(2X,' K=',i2) 
    5 format(2X,10I5) 
        call SizesV(KER(1),K,KER(8),NG,NK) 
        write(1,3)NG,NK 
!-----  NG – the size of the simple vector of amplitudes 
!-----  NK – the size of the composite vector of amplitudes 
        E=0.; E(NG+1)=Ec 
        X=0;  X(NK+1)=OM 
!---  formed the vector of amplitudes Е of forcing fotces 
!---  and the initial value of the vector X 
       write(1,6) 
    6 format(/2X,'C a l c u l a t I o n :') 
       call HARMOSC(K,X,E,NK,HM,H1,EPS1,EPS2,KER) 
       close(1) 
       stop 
       end Program Main 

           In the descriptive part of the above main program: 
           - the real one-dimensional array, which stores the values of the vector of variables of the 
form (1.89) and the parameter   h , is given the name  X ; 
           - the real one-dimensional array for the composite vector of forcing force amplitudes is 
given the name E; 
           - the whole one-dimensional array (control vector) is given the name KER; 
           - the names A, B, C, OM, EPS1, EPS2, H1,HM, K, NG, NK  are given to the real and integer 
simple variables with which data are passed to the HARMOSC and Model  procedures. 
           The example of the main program discussed above can be used as a sample in the 
development of blocks of user software components in all cases of simulation of nonlinear 
oscillations. As a sample, it is used in all the tests and examples of Chapter 4. 
           Here is the text of the SizesV procedure, which is called for execution by the main 
program. This procedure is based on the given values of the formal parameter IG (if  IG= 0, then 
the constant components and all harmonics are taken into account, and if IG=1, then only 
harmonics of odd orders are taken into account; the formal parameter IG corresponds to the 
actual parameter KER(4)), the formal parameter K (the order of the system of differential 
equations, the periodic solution of which is sought) and the formal parameter N (the number of 
the highest considered harmonic, the actual parameter KER(8)  corresponds to it) determines the 
values of NG (the number of elements of the simple vector of amplitudes) and NK (the number 
of elements of the complex vector of amplitudes ). 

The  SizesV  procedure is assigned to Block 5 in the DHM-S. Its text is as follows: 
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 Subroutine SizesV(IG,K,N,NG,NK) 
!--  The procedure for determining the NK size of a composite vector 
!--  the amplitude of the forcing force and the unknown vector 
!--  and of the NG size of the simple vector of amplitudes 
 implicit none 
 integer,intent(in)::IG,K,N 
 integer,intent(out)::NG,NK 
!----------------- 
!--  IG - if =0, then all harmonics and constant components are taken into account; 
!--        if =1, then only odd harmonics are taken into account 
!--  K - the order of the system of differential equations being solved 
!--  N - the number of the highest harmonic taken into account 
!-------------------------------------------- 
  NG=2*N+1; if(IG.eq.1)NG=N+1 
 NK=K*NG 
 return 
 end subroutine SizesV 

 
          3.2. Programming of an instantaneous model of process  
                                  on one period (semi-period)   

            When numerically modeling nonlinear oscillations (determining the periodic solution of a 
nonlinear system of differential levels), they are calculated on one period (or half-period, if only 
odd harmonics are present in the periodic dependences of the variables) containing  m  
equidistant nodes. The values of the process variables at these nodes are interconnected by 
superimposed relationships, whether linear or non-linear. By the instantaneous mathematical 
model of a periodic process on a period (semi-period), we will understand the algorithm for 
determining the values of one variable at all nodes of a period (or half-period) based on the 
values of other variables, while the latter are arguments and the former are functions. In relation 
to equations of the form (1.64) – (1.67), the argument is a vector variable  x  and the functions 
are the vector variables y  and  z . This mathematical model is implemented by the Model 
procedure, which is called for execution by the CALCULU procedure (see section 2.2.3.2). 
            Mostly, the values of the functions  y   and  z  can be determined by the Model  procedure 
in each of the nodes of the period (semi-period), regardless of what these values are in other 
nodes. Then the order of traversing the nodes when calculating by the value  x   of the values 
y   and  z  in these nodes can be arbitrary, the easiest way is from the first to the last with the 

number m . However, under certain circumstances, the order of traversing the nodes to 
calculate their values y   and  z  or their individual components must be different, for example, 
starting from some internal node to the last, and then from the first to the one from which the 
traversal began. Such circumstances may be the specificity of non-linear relationships between 
variables. 
            Therefore, before considering the typical structure of the MODEL procedure, it is 
advisable to first consider the types of nonlinearities that may be present in the problems of 
calculating nonlinear oscillations.  
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                                              3.2.1. Types of nonlinearities 
            Nonlinearities in the relationships between the parameters of the system, in which the 
oscillations are modeled, can be very diverse. Some types of nonlinearities may have features 
that affect the way they are presented and used in DHM algorithms. Therefore, it is necessary 
to classify them from this point of view. 
             Different authors have different approaches to the classification of nonlinearities [45, 52, 
56]. Here, we will conduct it exclusively with regard to the specifics of taking into account 
nonlinear connections in the numerical modeling of nonlinear oscillations by the proposed 
method. 
            Nonlinearities with which we will further operate, that is, functional dependencies of the 
form 

                                      ][xyy = ,                                                        (3.1) 
 

where  x   is an argument and y  is a function, and these two variables are nonlinearly connected 
to each other, let's divide into three groups. 
            Group 1 includes unambiguous nonlinearities - all types of continuous functions, both 
smooth (here by them we mean functions whose first derivatives do not have discontinuities), 
and non-smooth, that is, those whose graphs for some values of the argument have breaks, and 
the graphs of their first derivatives - finite gaps. Examples of such nonlinearities are illustrated 
in figures 3.1 - 3.6. 
            In fig. 3.1 shows a graph of the nonlinear dependence of the elastic force of a conical 
spring as a function of the deviation from the equilibrium state, which can be analytically 
represented by the formula [56] 
 
                                            32 xcxbxaFпр ++= .                                         (3.2) 
 

            In fig. 3.2 shows a typical hysteresis-free magnetization curve of a ferromagnetic 
material, here the variable   x   can denote the intensity of the magnetic field or current of the 
coil, the core of which is made of ferromagnetic material, and  variable  y   - magnetic field 
induction or coil flux coupling. Most often, this curve is given in the form of a table, from which 
values are selected by interpolation.    

Fig. 3.3. The force of resistance of 
bodies moving in a gaseous medium 

    
   

Fig. 3.2. Magnetization curve   Fig 3.1. The elastic characteristic 
of the conical rod 
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            In fig. 3.3 shows the curve of the dependence of the force of resistance to the movement 
of a solid body in a gaseous medium depending on the speed of movement X. With a certain 
idealization, this dependence can be given by the expression [56] 
 

                                              xxFоп α=  ,                                            (3.3) 
 

where   x   is the derivative of the deviation   x   of the body over time, that is, the speed of the 
body's movement. 
            In fig. 3.4 shows the dependence of the elastic force of a spring with a subspring [56]. In 
the figure, it is shown as a broken line that has a breaking point and is formed by two straight 
lines. The breaking point corresponds to the deviation at which the pre-spring begins to be 
loaded. It could also be a continuous line formed by two curved lines joining at the break point. 
            In fig. 3.5 shows the restriction function [56], which is implemented, for example, 

 

 
 
hydraulic servo motor with a control spool. In [45, 52] it is called characteristic of the saturation 
zone. This is also a broken line that has two breaking points and is formed by three straight lines. 
            In fig. 3.6 shows the characteristic of the insensitivity zone. This can be, for example [52], 
the dependence of the speed of a direct current electric motor with independent excitation from 
the armature voltage in the presence of the magnitude of the static load moment. 
We also include the first group of nonlinearities functions having finite discontinuities. An 
example of this  functions are shown in fig. 3.7 relay characteristic ristic (characteristic of an 
ideal relay) [45, 52].  It reflects the force of Coulomb (dry) friction [56], if the dependence 
argument is not deviation, and the derivative of the deviation over time, that is, the speed, and    
then the formula corresponds to it 

                                   
x
xRxFк




 =][ ,                                       (3.4) 

 

Fig. 3.4. Characteristics of a spring 
with a spring loaded spring 

    

   Fig. 3.5. Function limitation Fig. 3.6. Characteristsc of zone 
of insesnsintivity 
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where  R  - modulus of friction force. 
        If the dependencies belonging to the first group have 
finite gaps, then it is necessary to determine their values (and 
the values of their derivatives) at the points of gaps, so that this 
does not lead to problems during modeling. So, we can assume 
that the function (3.4) at the point of discontinuity (at 0=x ) 
has the same value as at a point distant from it by an 
infinitesimally small distance (to the left or to the right), and then 
this value is  R  or R− . 
            Group 2 of nonlinearities includes single-valued 
nonlinearities with conditions. In this group, the functional 

relationship between the variables x   and   y  is defined by two or more dependencies 

                                                              
],[

];[1

xyy

xyy

k=

=


                                               (3.5) 

each of which can be of the form (3.1), and to determine the relationship between the argument 
and the function in one or another node of the period (semi-period), one of them is selected 
depending on the fulfillment of some condition. An example here can be the volt-ampere 
characteristic of a controlled diode (thyristor), which is formed by two dependencies: one 
describes the operation of the thyristor when it works as a diode (its resistance at a positive 
applied voltage is significantly less than at a negative one), and the second, when the resistance 
of the thyristor is large and constant, regardless of the sign of the applied voltage. According to 
these dependencies, the resistance of the thyristor is determined not only as a function of the 
argument (voltage or current), but also of an additional condition - the presence or absence of 
an opening pulse and whether this pulse is supplied when the applied voltage is positive. These 
characteristics are considered in more detail in section 3.2.1.1. 
            Group 3 of nonlinearities includes multivalued nonlinearities of the hysteresis type. 
Figures 3.8 - 3.10 show samples of such dependencies [45, 52]. In fig. 3.8 shows the real relay 
characteristic, which has the form of a hysteresis loop. In fig. 3.9 shows an ambiguous 
(hysteresis) characteristic with a saturation zone. In fig. 3.10 shows the hysteresis characteristic 
of elements of systems with backlashes or backlashes. 
 

    y  y   y  
 
 
 
 
   x     x  x       
 
 
 
 
 

Fig. 3.7. Relay function 

 

Fig. 3.8. Hysteresis relay 
characteristic  

Fig. 3.9. Hysteresis characteristic  of 
the saturation zone 

  Fig. 3.10. Hysteresis  charac-
teristic of backlash (clearance) 
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           Further, in section 3.2.1.2, a mathematical model on the period of a ferromagnetic 
element with a magnetization hysteresis curve is considered. 
            Dependencies (3.1), (3.5) in the nonlinearities of the first and second groups and 
individual branches of hysteresis loops (nonlinearities of the third group) can be specified both 
analytically and in tabular form using one or another interpolation algorithm. 
 

3.2.1.1. Instantaneous model of the controlled valve in one period 
            A characteristic example of the nonlinearity of the second group of the form (3.5) is the 
functional relationship between the voltage   u   and current   i    of the controlled valve (thyristor), 
that is, its voltage-current characteristic 

                                                           ][iuu =                                            (3.6) 
 

and differential (ohm-ampere) characteristic, that is, the dependence of the differential 
resistance  ∂r    of the valve on its current 

 
                                    ][irdidur ∂∂ == .                                               (3.7) 
 

            For a diode (uncontrolled valve), characteristics (3.6) and (3.7) are shown in Fig. 3.11 
and 3.12 with solid lines (these are nonlinearities of the first group). When the gate current has 
a  “+”  sign, it is open, and then its active resistance has some minimum value minr , and when 
the current becomes negative, the diode goes to the closed state, and its active resistance gets 
some maximum value  maxr . According to such characteristics, at a given value of the current, 
the voltage and resistance of the valve is determined at any node of the period of the periodic 
mode, regardless of the current values of this valve at other nodes of the period.          

 

                  u                                                           
di
durB =   

 
 i  maxr  minr  
   
 i  
 
              
               Fig. 3.11.  Volt-ampere characteristic                        Figс. 3.12. Dependence on  the currenr  
                                 of the valve                                                  дdifferential resistance of the valve 
 
 
            The characteristics of a controlled valve (thyristor), unlike the characteristics of a diode, 
are characteristics with conditions. In order for the thyristor to switch from a non-conducting state 
to a conducting state, it is not enough for the applied voltage and its current to change the sign 
from minus to plus, an additional condition is the presence of a pulse on the special control 
electrode. So, there are two conditions for the transition of a thyristor from a non-conducting 
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state to a conducting state: the "+" sign of its current and the simultaneous presence of an 
opening pulse on its control electrode. If any of these two conditions are not fulfilled, then the 
thyristor cannot go from a non-conducting state to a conducting state. 
           Therefore, for a thyristor in a periodic process, characteristics (3.6) and (3.7) are the same 
as for a diode, only for that part of the period that begins immediately after the opening pulse 
(provided that during its action the voltage on the thyristor and its current are positive) and up to 
the moment when the thyristor current passes through zero into the negative region. In other 
parts of the period, these characteristics are depicted by straight lines in fig. 3.11 without 
breaking and in fig. 3.12 - without a break (in these figures, solid lines are continued with dashed 
lines). 
            Such a feature of the characteristics of the controlled valve leads to the fact that only 
information about the sign of its current in this node is not enough to determine the values of the 
voltage drop on it and its resistance at the node. If the valve current in some node has a “+” sign, 
then it can be considered open, as already mentioned above, only under the following conditions: 
            a) the area of action of the opening pulse covers the considered node (the first of such 
nodes in the area of action of the pulse when considering them from left to right opens the 
conduction zone of the thyristor; the conduction zone ends with a node in which the current is 
still positive and changes to negative in the next node that opens the zone of non-conductivity); 
           b) the pulse area does not cover the considered node, but in the previous node the valve 
was open, that is, the conduction zone still continues. 
            It is impossible to check the fulfillment of these conditions separately for any node in the 
period, while the value of the current in the previous nodes and the time coordinate of the pulse 
must also be taken into account. 
            When creating an instantaneous model on the period of the controlled valve, it should 
be taken into account that the location of the opening impulse is possible according to two 
options shown in Fig. 3.13. In variant "a", the action of the pulse with angular duration  зα∆  
and distance   зα  from the beginning of the period ends before the end of the period. In variant 
"b", the angular coordinate  зα   of the moment of occurrence of the impulse is close to the end 
of the period, and the action of the impulse with the same duration  зα∆  ends already in the 
next period, or, which is the same, after the beginning of the considered period. 
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Рис. 3.13. Два варіанти розташування імпульсу запалювання на періоді
          

b) 

Fig. 3.13. Two options for the location of the ignition pulse on the period 
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           The algorithm of operation of the instantaneous thyristor model on the period is as follows. 
            We will consider the value of the nodal vector  вi



  of the form (1.37) of the gate current 
to be given. 
           In all nodes of the period, the resistance of the valve  vr   is set to the maximum maxr . 
Then, based on the specified values of the coordinates   зα   and width   зα∆  of the ignition 
pulse, we determine: the number  зn  of the node in the period that corresponds to the beginning 
(front) of the pulse and opens the scope of the pulse; node number  зкn , which corresponds to 
the final coordinate of the pulse and closes the scope of the pulse. After that, by scanning the 
nodes from  зn  to зкn , we determine the first node in which the component of the vector  вi



 
has the sign "+". The serial  zn number of this node is the initial coordinate of the conduction 
zone of the valve. Next, we scan all the nodes, starting from  zn , in order of increasing number, 
and in all nodes where the values of the components of the vector  вi



 have a “+” sign, the gate 
resistance is changed to  minr . The scan ends when a node is detected in which the value of 
the component of the vector   вi



  becomes negative, which means that it is outside the 
conduction zone of the gate. 
           As a result of performing these operations, the value of the nodal vector   вr



 of the valve 
resistances is calculated. Knowing the instantaneous values of the valve current and its 
resistance at all nodes of the period, that is, the values of the vectors  вi



  and  вr


, we calculate, 
by multiplying their components of the same name, the value of the nodal vector  вu  of the 
valve voltage. 
           The algorithm for calculating the values of the nodal vectors  вr



  and  вu   by the value 
of the nodal vector  вi



  and the values of the coordinates  зα  and  зα∆  the ignition pulse is 
implemented by the VENPER procedure below (we refer it to Block 5 of the DHM-S). 
 

        Subroutine VENPER(STR,M,AZ,DAZ,RMAX,RMIN,UC,RV) 
!--   The procedure for calculating the nodal vector UC of the gate voltage 
!--   and nodal vector RV of its resistances 
!--   by the given nodal current vector STR 
!---------------------------------------- 
        Implicit none 
        integer,intent(in)::M 
        real,intent(in)::DAZ,RMAX,RMIN 
        real,dimension(M),intent(in)::STR 
        real,dimension(M),intent(out)::UC,RV 
        integer::i,IZ,NZ,NZD 
        real::AZ,AM,SM,AZDAZ 
        real,parameter::PI2=6.2832 
!------------------------------- 
!--   Input values: 
!--   STR - the nodal vector of the gate current 
!--   M - the number of points in the period 



105 
 

!--   AZ - valve ignition angle, rad. 
!--   DAZ - ignition pulse width, rad. 
!--   RMAX - the resistance of the closed valve 
! --  RMIN - the resistance of the open valve 
!--   Output values: 
!--   UC - the nodal vector of valve voltages 
!--   RV - the nodal vector of valve resistances 
!---------------------------------------  
        AM=M/PI2 
   10 if(AZ.le.PI2) goto 11 
         AZ=AZ-PI2;  goto 10 
   11 AZDAZ=AZ+DAZ;  if(AZDAZ.le.PI2) goto 20 
         AZDAZ=AZDAZ-PI2;   goto 11 
!---- values of ignition angles led to <= PI2 
   20 NZ=AZ*AM+1.5; NZD=AZDAZ*AM+1.5 
         If(NZ.gt.M) NZ=NZ-M 
         If(NZD.gt.M) NZD=NZD-M 
!--  NZ - ignition switch unit number 
!--  NZD - number of the ignition switch-off node 
        RV=RMAX 
!--  The resistance of the valve in all nodes was set to the maximum 
         SM=0.;   if(NZD.lt.NZ) goto 30 
!--    We are looking for the activation node according to option "a" 
 do i=NZ,NZD 
     if(STR(i).gt.SM) goto 40 
  end do;  goto 50 
!  We are looking for the activation node according to option "b" 
    30 do i=NZ,M 
             if(STR(i).gt.SM) goto 40 
          end do 
  do i=1,NZD 
     if(STR(i).gt.SM) goto 40 
  end do;  goto 50 
   40  IZ=i 
!--  found IZ - the number of the valve activation node  
 do i=IZ,M 
     if(STR(i).gt.SM) RV(i)=RMIN 
     if(STR(i).le.SM) goto 50 
 end do 
 do i=1,IZ 
     if(STR(i).gt.SM) RV(i)=RMIN 
     if(STR(i).le.SM) goto 50 
 end do 
!-- in all nodes of the conduction zone of the valve 
!-- its resistance was made equal to RMIN 
   50 UC=STR*RV 
!--  calculated the nodal vector UC of the gate voltage 
        return 
        end subroutine VENPER 
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           This procedure does not need additional explanations, since the comments in its text are 
quite enough to track the logic and implement the algorithm. 
 
 

3.2.1.2. Instantaneous model on the period  
                 of nonlinearity of the hysteretic form 

 
           Let's consider one of the nonlinearities of the third group - the hysteresis type, in particular 
- an inductive element with a ferromagnetic core, the Weber-ampere characteristic of which is 
shown in Fig. 3.14. 
           This figure shows the main magnetization curve passing through the origin of coordinates, 
and two branches - the upper and lower ones, which form the limiting hysteresis loop [4, 38]. We 
denote the abscissa of the left merging point of the upper and lower branches    Li  and the 
abscissa of the right merging point of these branches  Ri . We will not take the so-called partial 

symmetric and asymmetric hysteresis 
loops into account and will assume that 
the relationship between the flux coupling 
and the current of the inductive element in 
a periodic process is expressed either by 
the main magnetization curve, if the 
minimum and maximum current values in 
the period do not go beyond the values   

Li   and   Ri , or this relationship is 
expressed by the limit loop of hysteresis, 
if the minimum and maximum value of the 
current in the period go beyond these 
limits.    
              By the instantaneous mathema-
tical model on the period (half-period) of 
the hysteresis inductive element [26], we 
will understand the algorithm for 

calculating the values of the flux linkage ψ  and differential inductance   didL ψ=   of the 
inductive element based on the values of its current  i   in the same nodes of the period. 
           The input value of the model is the value  вi



 of the current nodal vector of the inductive 
element. The algorithm of the instantaneous model on the period (half-period) of the hysteresis 
inductive element is as follows. 
           Among all the components of the nodal current vector  вi



, we look for its maximum    maxi  
and minimum mini  components, as well as the number  minn  that has the minimum component 
in the vector. At the same time, the following options are possible:  
           1)  mini is less than  Li   and at the same time   maxi is greater than   Ri , then the values 
of the elements of the nodal flux coupling vector are searched using the limit hysteresis loop. At 
the same time, we  start  traversing  the nodes  of the period from the node with the number 

minn .  At the next node ( minn +1), the value of the current will already be greater than  mini  
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                  Fig. 3.14. Hysteresis loop 

 



107 
 

(the current increases), and therefore, at these two points of the period, the connection between 
ψ  and  i   is determined by the lower branch of the loop.  Moving through the nodes of the 
period from  minn  to the right and using the lower branch as the connection function between 
ψ   and  i  , in each of the nodes we determine the value of  ψ   and  L  and compare the 
current value i    with   maxi , and as soon as it becomes greater than  maxi , the upper branch 
is assigned as the function of the connection between  ψ   and  i . Moving the nodes further to 
the right and determining the value ψ   and  L   in each node and using the upper branch, in 
each of the nodes we compare the value of the current  i   with   mini . As soon as  i   becomes 
smaller than  mini , the lower branch is again assigned as the connection function between   ψ   
and  i . These actions in the order described above are repeated in all nodes until the end of 
the period and then from the first node to the node with number  minn - 1. 
           2) mini   is not less than  Li   or   maxi  is not greater than   Ri , then the main branch is 
assigned as the connection function between ψ   and  i   at all nodes of the period, and with its 
use at all nodes of the period (here the nodes of the period can be bypassed in order from first 
to last ) the values of  ψ   and  Lare determined by the current values  i . 
         This algorithm is implemented by the following procedure (we refer it to Block 5 of the 
DHM-S): 

 Subroutine HISTPER(AL,STR,M,PS,LH,PST,XL,XP,DS,NH) 
!--  The procedure for calculating the nodal vector PS of the flow coupling 
!--   and the nodal vector LH of the differential inductances of the hysteresis element 
!--   by the given nodal current vector STR 
!------------------------------------------ 
!--   AL - narrowing coefficient of the hysteresis loop 
!--   M is the number of elements in the nodal vectors STR, PS, LH 
!--   PST - the table that specifies the hysteresis loop 
!--   XL,XP - the left and right coordinates of the points of convergence of the branches 
!--   DS - table step 
!--   NH - the number of table nodes 
!--------------------------------- 
 implicit none 
 integer,intent(in)::M,NH 
 real,intent(in)::AL,XL,XP,DS 
 real,dimension(M),intent(in)::STR 
 real,dimension(3,NH),intent(in)::PST 
 real,dimension(3,NH)::PST1 
 real,dimension(M),intent(out)::PS,LH 
 integer::i,iN,NK 
 real::SN,SX 
 NK=2      !  NK - loop branch number 
  if(AL.eq.0.) goto 3 
  SN=STR(1); SX=STR(1); iN=1 
  do i=2,M 
    if(STR(i).gt.SN) goto 1 
    SN=STR(i);  iN=i 
    1   if(STR(i).lt.SX) goto 2 
           SX=STR(i) 
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    2  continue 
  end do 
!-- determined the minimum SN and maximum SX value 
!-- STR vector component and iN number of the minimum 
 if(SN.lt.XL.and.SX.gt.XP) goto 4 
!--  by the middle branch 
    3 do i=1,M 
        call INTHIST(NK,STR(i),PS(i),LH(i),PST,XL,XP,DS,NH) 
        end do 
  return 
!--  obtaining the PST1 table for the narrowed loop 
     4 do i=1,NH 
            PST1(2,i)=PST(2,i) 
            PST1(1,i)=PST(2,i)+AL*(PST(1,i)-PST(2,i)) 
 PST1(3,i)=PST(2,i)-AL*(PST(2,i)-PST(3,i)) 
         end do 
!-- by the upper and lower branches of the loop 
         NK=3 
         do i=iN,M 
      call INTHIST(NK,STR(i),PS(i),LH(i),PST1,XL,XP,DS,NH) 
      if(NK.eq.3.and.STR(i).gt.XP) NK=1 
      if(NK.eq.1.and.STR(i).lt.XL) NK=3 
           end do 
!--  went to the right along the lower branch 
 do i=1,iN-1 
    call INTHIST(NK,STR(i),PS(i),LH(i),PST1,XL,XP,DS,NH) 
     if(NK.eq.3.and.STR(i).gt.XP) NK=1 
                 if(NK.eq.1.and.STR(i).lt.XL) NK=3 
 end do 
!--  returned along the upper branch 
       return 
           Contains 
           Subroutine INTHIST(NK,X,Y,YX,YT,XL,XP,DX,M) 
!----- The procedure of linear interpolation of the given 
!----- hysteresis loop table 
!------------------------- 
!--   NK - loop branch number: 
!--   1 - upper  
!--   2 - average (main) 
!--   3 - lower  
!-- X - the abscissa 
!-- Y - the ordinate 
!-- YX - derivative 
!-- YT - the table by which the loop is specified 
!-- XL,XP - left and right coordinates of the points of convergence of the branches 
!-- DX - table step 
!-- M - the number of table nodes 
!----------------------- 
 Implicit none 
 integer,intent(in)::M,NK 
 real,intent(in)::X,XL,XP,DX 
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 real,dimension(3,M),intent(in)::YT 
 real,intent(out)::Y,YX 
 integer::j 
     If(X.LT.XL) goto 1 
 if(X.GT.XP) goto 2 
!-----  Interpolation within a loop 
 j=(X-XL)/DX+2 
     YX=(YT(NK,j+1)-YT(NK,j))/DX 
 Y=YT(NK,j)+YX*(X-(XL+DX*(j-2))) 
        return 
!---- Extrapolation from the left 
     1 YX=(YT(NK,2)-YT(NK,1))/DX 
 Y=YT(NK,2)+(X-XL)*YX 
 return 
!----   Extrapolation from the right 
     2   YX=(YT(NK,M)-YT(NK,M-1))/DX 
          Y=YT(NK,M-1)+(X-XP)*YX 
           return 
           end subroutine INTHIST 
       end subroutine HISTPER 

           The formal parameters of the HISTPER procedure are described in the comments located 
immediately after the procedure header. However, several of them require additional 
clarification. 
           About the formal parameter AL. The practice of calculations has shown that the numerical 
simulation of periodic processes in systems containing nonlinear elements of hysteresis type 
should be carried out in this order. 
           First, the calculation of the periodic process is performed under the condition that the 
characteristics of all hysteresis elements are their main branches that pass through the origin of 
the coordinates (the areas of the loops are reduced to zero). For this, the formal parameter AL 
is assigned a zero value, and thus the upper and lower branches of the loops are combined with 
the main branches. After that, the process of taking into account the hysteresis begins (see the 
relevant part of the HARMOSC procedure, section 2.2.2.1): in the loop, the parameter of which 
takes the value from unity to the value specified by the element KER(7) of the formal parameter 
KER of the HARMOSC procedure, the value of AL changes from zero to units, and at the same 
time the upper and lower branches deviate from the main branch and approach their real values. 
With each change in AL, the solution is refined using Newton's iterative method. The solution 
obtained for AL equal to unity is the one corresponding to the periodic process in the scheme 
with hysteresis taken into account. 
           It is precisely in order to implement such an algorithm that the formal parameter AL is 
included in the list of formal parameters of the HISTPER procedure. 
           The formal parameters PST, XL, XP, DS, NH of this procedure set the hysteresis loop and 
have the following meaning: 
            DS -  the step of the tables used to specify the branches of the loop; 
            XL – coordinate of the left point of convergence of the loop branches; 
           XP – coordinate of the right point of convergence of the loop branches; 
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           PST(3,NH) -  an array that stores three tables of ordinate values of internalthe left of the 
three branches of the loop (in the PST array, the first row is the table for the upper branch, the 
second row is for the main branch, and the third row is the lower branch); 
          NH - the number of nodes in each table. 
          The values XL and XP are the beginnings of the linear parts of the converging branches, 
and XL is the abscissa of the second node of the tables from the left and XP is the second node 
of the tables from the right. This arrangement of these points allows linear extrapolation to the 
left and right of the tables for the two extreme nodes. 
          The HISTPER procedure has its own INTHIST procedure, the purpose of which is linear 
interpolation from the table specifying one of the loop branches. This procedure does not need 
additional explanations, as they are all described in sufficient detail in the comments. 

3.2.2. Auxiliary procedures for the development of the simplification  
                        of procedure Model   

           The purpose of the procedures considered in this section is their use in the development 
of the MODEL procedure, with the aim of simplifying the latter, in each specific case, of numerical 
modeling of nonlinear oscillation. Each of these auxiliary procedures introduces a certain type 
of macro operation of the method. 
           Let's  break  down  these  procedures (all  of them will be  assigned to Block 5 of the 
DHM-S). 
                                    

3.2.2.1. Procedure DRAWOUTV  
           This procedure makes it possible to extract the vector of the form (1.68) of the 
instantaneous values of all process variables in the desired node during the period (half-period) 
from the composite nodal vector of the form (1.118), formed in a parallel way. 
           Text of the procedure: 

 Subroutine DRAWOUTV(K,XC,MK,X,iM) 
!--   A procedure that copies a fragment from a composite node vector, 
!--   corresponding to the iM-th node on the period (semi-period) 
!------------------------------ 
 implicit none 
 integer,intent(in)::K,MK,iM 
 real,dimension(MK),intent(in)::XC 
 real,dimension(K),intent(out)::X 
 integer::i 
!------ Procedure parameters: 
!--- K - the order of the diff. system. equations, he is -  the number of elements of the X vector 
!--- XC - composite nodal vector of the form (1.118) 
!--- MK - the number of elements of the vector ЧС 
!--- X - the vector of values ??of variables of the form (1.68) 
!--- iM - specified number of the node on the period (half-period) 
!-------------------------------------------- 
 do i=1,K 
      X(i)=XC((iM-1)*K+i) 
 end do 
 return 
 end subroutine DRAWOUTV 

           The formal parameters of the procedure are sufficiently fully described in the comments. 
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                             3.2.2.2.  Procedure DRAWOUTXV 
 

           This procedure makes it possible to extract from the complex nodal vector of the form 
(1.118) a simple nodal vector of the form (1.37) of the instantaneous values of one of the 
variables at all  m  nodes of the period (semi-period). 
           Text of the procedure: 
   Subroutine DRAWOUTXV(K,XC,MK,M,XV,iK) 
!--   A procedure that extracts from a composite nodal vector 
!--   simple nodal vector for the iK-th variable 
!------------------------------------ 
 implicit none 
 integer,intent(in)::K,MK,M,iK 
 real,dimension(MK),intent(in)::XC 
 real,dimension(M),intent(out)::XV 
 integer::i 
!------------------------- 
!----- Procedure parameters: 
!--- K - the order of the system of differential equations 
!--- XC - composite nodal vector of the form (1.118) 
!--- MK - the number of elements of the vector ЧС 
!--- M - number of nodes per period (semi-period) 
!--- XV - a simple nodal vector of the form (1.37) 
!--- iK - specified variable number (iK is less than or equal to K) 
!--------------------------- 
 do i=1,M 
      XV(i)=XC((i-1)*K+iK) 
 end do 
 return 
 end subroutine DRAWOUTXV 

           The formal parameters of the procedure are sufficiently fully described in the comments. 

3.2.2.3. Procedure DRAWUPV 
           This procedure performs the opposite action of the DRAWOUTV procedure: it forms the 
corresponding fragment of the composite node vector from the values of all variables in one 
node of a period (semi-period). 
           Text of procedure: 

   Subroutine DRAWUPV(K,XV,XC,MK,iM) 
!--   A procedure that "inserts" into a composite knot vector 
!--   fragment corresponding to the iM-th node 
!---------------------- 
 implicit none 
 integer,intent(in)::K,MK,iM 
 real,dimension(K),intent(in)::XV 
 real,dimension(MK)::XC 
 integer::i 
!--------------- 



112 
 

!------ Procedure parameters: 
!--- K - the order of the system of differential equations 
!---     and the number of elements of the XV vector 
!--- XV - vector of appearance variables (1.68) 
!--- XC - composite nodal vector of the form (1.118) 
!--- MK - the number of elements of the vector ЧС 
!--- iM - specified node number 
!----------------------------- 
 do i=1,K 
     XC((iM-1)*K+i)=XV(i) 
 end do 
 return 
 end subroutine DRAWUPV 

           The formal parameters of the procedure are sufficiently fully described in the comments. 
 
 3.2.2.4.  Procedure DRAWUPM 
           The result of this procedure is the formation of a fragment of the composite matrix of 
nodal parameters of the form (1.127) - its diagonal block corresponding to one of the nodes of 
the period (semi-period). 
           Text of the procedure: 

    Subroutine DRAWUPM(K,SX,SC,MK,iM) 
!--   A procedure that "inserts" into a composite matrix of nodal parameters 
!--   fragment corresponding to the iM-th node 
!---------------------- 
 implicit none 
 integer,intent(in)::K,MK,iM 
 real,dimension(MK,K)::SC 
 real,dimension(K,K)::SX 
 integer::i,j 
!--------------- 
!------ Procedure parameters: 
!--- K - the order of the diff system. equations and the SX matrix 
!--- SX - matrix of instantaneous appearance parameters (1.128) 
!--- SC - composite matrix of nodal appearance parameters (1.127) 
!--- MK - the number of rows of the SC matrix 
!--- iM - number of the node on the period (half-period) 
!---------------------------- 
 do i=1,K 
   do j=1,K 
       SC((iM-1)*K+i,j)=SX(i,j) 
   end do 
 end do 
 return 
 end subroutine DRAWUPM 

           Here it should be borne in mind that the array SC contains all the diagonal blocks of the 
composite matrix of nodal differential parameters of the form (1.127), shifted to the left, so that 
they "stand" on top of each other. This is why the SC array has K (not MK) columns. The array 
SC contains a composite matrix of nodal differential parameters of the form (1.127) in a packed 
form. 
           The formal parameters of the procedure are sufficiently fully described in the comments. 
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 3.2.2.5.  Procedure ADDV 
           The purpose of this procedure is to add the values of the elements of the simple nodal 
vector of the form (1.37) for one of the variables to the values of the corresponding elements of 
the complex nodal vector of the form (1.118). 
           Such an operation is necessary in the case when there are nonlinearities of the second 
and/or third groups in the oscillating system (see section 3.2.1). The values of the nodal vectors 
of the variables containing the nonlinearities of these groups must be calculated, as shown in 
previous sections 3.2.1.1 and 3.2.1.2, separately from the values of the composite nodal vectors 
for the group of variables that are connected by linear dependencies and/or nonlinearities of the 
first group. After their separate calculation, it becomes necessary to add the values of the 
elements of these nodal vectors to the values of the corresponding elements of the previously 
calculated composite nodal vectors and obtain the final values of the composite nodal vectors. 
           The text of the procedure is as follows: 

     Subroutine ADDV(K,XV,M,XC,MK,iK) 
!--   A procedure that adds to the elements of a compound node 
!--   vector elements of a simple nodal vector of the iK-th variable 
!---------------------------------------------------------- 
 implicit none 
 integer,intent(in)::K,MK,M,iK 
 real,dimension(MK)::XC 
 real,dimension(M)::XV 
 integer::i 
!----- Procedure parameters: 
!--- K is the order of the system of differential equations 
!--- XV is a simple nodal vector 
!--- M is the number of elements of the XV vector 
!--- XC is a composite nodal vector 
!--- MK - the number of elements of the XC vector 
!--- iK - variable number 
!-------------------------------------- 
       do i=1,M 
            XC((i-1)*K+iK)=XC((i-1)*K+iK)+XV(i) 
       end do 
       return 
       end subroutine ADDV 

           The formal parameters of the procedure are sufficiently fully described in the comments. 
 
 

3.2.2.6. Procedure ADDM 
           The purpose of this procedure is to add the values of the elements of the matrix of nodal 
parameters of the form (1.49) for one of the variables to the values of the corresponding 
elements of the composite matrix of the nodal parameters of the form (1.127). 
           Such an operation is necessary in the case when there are nonlinearities of the second 
and/or third groups in the oscillating system. The values of the nodal parameter matrices for the 
variables containing the nonlinearities of these groups must be calculated, as shown in the 
previous sections, separately from the values of the composite nodal parameter matrices for the 
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group of variables that are connected by linear dependencies and/or nonlinearities of the first 
group. After their separate calculation, it is necessary to add the values of the elements of these 
nodal parameter matrices to the values of the corresponding elements of the previously 
calculated nodal parameter matrices. 
      
     Text of the procedure: 

   Subroutine ADDM(K,XM,M,XMC,MK,iK) 
!--   A procedure that adds to a compound node matrix of parameters 
!--   a simple nodal diagonal matrix of parameters for the iK-th variable 
!------------------------------- 
 implicit none 
 integer,intent(in)::K,M,MK,iK 
 real,dimension(M)::XM 
 real,dimension(MK,K)::XMC 
 integer::i 
!----- Procedure parameters: 
!--- K - the order of the system of differential equations 
!--- XM - a simple nodal diagonal matrix 
!--- M - the number of elements of the XM matrix 
!--- XMC - composite matrix of nodal parameters 
!--- MK - the number of rows of the XMC matrix 
!--- iK - variable number 
 do i=1,M 
     XMC((i-1)*K+iK,iK)=XMC((i-1)*K+iK,iK)+XM(i) 
 end do 
 return 
 end subroutine ADDM 

           The formal parameters of the procedure are sufficiently fully described in the comments. 
 

3.2.3. Sample procedure  Model 
           Now we can consider the structure of the Model procedure, which will serve as a sample 
for its development in each specific case of modeling. 
           The sample text of this procedure is as follows. 

      Subroutine Model(AL,M,K,MK,XC,YC,ZC,YXC,ZXC,BM) 
! The subroutine implements the instantaneous pricess model 
!------------------------ 
  Implicit none 
              real,intent(in)::AL 
  integer,intent(in)::M,K,MK 
              real,dimension(MK),intent(in)::XC 
  real,dimension(MK),intent(out)::YC,ZC 
  real,dimension(MK,K),intent(out)::YXC,ZXC 
  real,dimension(K)::X,Y,Z 
  real,dimension(K,K)::YX,ZX,BM 
  real,dimension(M)::XV,UV,RV,UV1,RV1 
  real,dimension(3,3)::B 
  real::C1,C2,C3 
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  integer::i 
  common/MPM/C1,C2,C3,B       
!-- through Common/MPM/ data from the main program is transferred 
  BM=B   
  do i=1,M 
    call DRAWOUTV(K,XC,MK,X,i) 
    Y(1)=     ; Y(2)=    ;  Y(3)= 
    call DRAWUPV(K,Y,YC,MK,i) 
                Z(1)=     ; Z(2)     ;    Z(3)= 
    call DRAWUPV(K,Z,ZC,MK,I)  
                 YX(1,1)=     ; YX(1,2)=    ; YX(1,3)= 
                 YX(2,1)=     ; YX(2,2)=    ;  YX(2,3)= 
    YX(3,1)=     ; YX(3,2)=     ;   YX(3,3)= 
                call DRAWUPM(K,YX,YXC,MK,i) 
               ZX(1,1)=     ; ZX(1,2)=     ;   ZX(1,3)= 
    ZX(2,1)=     ; ZX(2,2)=      ;   ZX(2,3)= 
    ZX(3,1)=     ; ZX(3,2)=      ;   ZX(3,3)= 
    call DRAWUPM(K,ZX,ZXC,MK,i) 
  end do 
  call DRAWOUTXV(K,XC,MK,M,XV,3) 
  call TIMEMOD(XV,M,…,UV,RV) 
  call ADDV(K,UV,M,ZC,MK,3) 
  call ADDM(K,RV,M,ZXC,MK,3) 
    return 
  end  subroutine Model 

 
           First of all, we note that the title of the procedure (its name and the number of formal 
parameters and their types) cannot be changed, because it is specified by the HARMOSC and 
IMPROVE procedure call operators (see sections 2.2.2.1 and 2.2.2.3). 
           The formal parameters of this procedure are: 
           AL is a real variable, the narrowing coefficient of the hysteresis loop (in case there are 
hysteresis-type nonlinearities in the problem); 
           M  is an integer variable, the number of nodes per period (half-period) of the process, it 
is also the size of a simple nodal vector; 
           K is an integer variable, the order of the system of differential equations describing 
oscillations; 
           MK  is an integer variable, the size of the complex nodal vector; 
           XC  is a real one-dimensional array, a composite nodal vector for a vector variable, the 
time dependence of which is the desired periodic solution of the system of differential equations 
of the forms (1.64) - (1.67); 
           YC is a real one-dimensional array, a composite nodal vector for a vector variable in 
equations of the form (1.64) or (1.66); 
           ZC is a real one-dimensional array, a composite nodal vector for a vector variable in 
equations of the form (1.64) - (1.67); 
           YXC is a real two-dimensional array, stores a complex matrix of nodal differential 
parameters of the form (1.127a), whose diagonal blocks are located one under the other - for 
the purpose of denser packing; 
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           ZXC is a real two-dimensional array that stores a complex matrix of nodal differential 
parameters of the form (1.127b), whose diagonal blocks are located one below the other; 
           BM  is a real two-dimensional array, for a matrix of the form (1.69). 
           The set of formal parameters described above assumes the case when the solvable 
system of differential equations has the most general form (1.66). For cases when the form of 
the system of differential equations is different - (1.64), (1.65) or (1.67) - some of the formal 
parameters will be unused. 
           The Model procedure also receives data from the main program using a shared memory 
area, the name of this area (here MPM ) must be the same as in the main program. It is given by 
the operator Common/MPM/C1,C2,C3,B. In this shared memory area, there are three real variables 
C1,C2,C3  and a real two-dimensional array B(3,3)  containing a matrix of the form (1.69) for the 
case when the system of differential equations to be solved is of the third order. 
           The first executed statement BM=B assigns the value of the matrix B to the formal 
parameter BM . 
           Next in the procedure is a loop (let's call it the main loop of the Model procedure), whose 
parameter i changes from 1  to  M. In this loop: 

- the call DRAWOUTV(K,XC,MK,X,i) operator calls the DRAWOUTV procedure (see section 
3.2.2.1), which copies the fragment corresponding to the i-th node in the period (semi-
period) from the XC array and assigns it to the X array, which is intended for storing the 
vector (1.68a); 

-  operators Y(1)= ; Y(2)= ; Y(3)=   calculate the value of the array Y, which stores the value 
of the vector (1.68b); 

- the operator call DRAWUPV(K,Y,YC,MK,i) (see section 3.2.2.3) the value of the Y array is 
inserted as a fragment into the YC array; 

-  then similar actions are performed with respect to arrays Z and ZC; 
- Operators  YX(1,1)= ; YX(1,2)= ... ; YX(3,3)=   calculate the value of the elements of the 

diagonal block corresponding to the ith node on the period (semi-period) of the matrix 
(1.127a); 

-  by the operator call DRAWUPM(K,YX,YXC,MK,i) (see section 3.2.2.4), the value of the YX 
array is inserted as a fragment into the YXC array; 

-  then similar actions are performed for ZX and ZXC arrays. 
           The cycle described above forms the arrays YC , ZC , YXC and ZXC in the part that 
corresponds to all linear elements of the system and nonlinear ones, except for those containing 
nonlinearities of the second and third groups. 
           The procedure ends with a group of operators that finalize the arrays YC , ZC , YXC and 
ZXC in the part that corresponds to the nonlinear elements of the system containing the 
nonlinearities of the second and third groups. These operators are: 
         - operator call DRAWOUTXV(K,XC,MK,M,XV,3) (see section 3.2.2.2), which copies a fragment 
of the XC array and forms an XV array (a simple nodal vector of the form (1.37) corresponding to 
the third element of the vector ); it is believed that in this problem it is related to the nonlinearity 
of the second or third group); 
        - operator call TIMEMOD(XV,M,...,UV,RV), which calls some TIMEMOD procedure (here the 
name of the procedure is conditional), which implements an instantaneous model during the 
period of this nonlinearity from the second or third group; 
        - operators    call ADDV(K,UV,M,ZC,MK,3)  and  call ADDM(K,RV,M,ZXC,MK,3)  (see sections 
3.2.2.5 and 3.2.2.6), which add to the elements of the complex nodal vector ZC and the complex 
matrix of nodal parameters ZXC the corresponding elements of the simple nodal vector UV and 
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the matrix of nodal parameters RV (it is considered that in this problem the arrays YC and YXC 
do not need). 
           If the oscillating system does not contain nonlinearities of the second or third groups, then 
there are no other operators between the end of the main cycle of the Model  procedure and its 
Return  operator. 
           The sample procedure Model described in this section is fairly stereo-typical. It 
individualizes in each specific case of modeling only the body of the main loop (operators 
between “ do i=1,M ”  and  “end do”), and, in the case of nonlinearities of the second and/or third 
groups, operators between “end do ” and "return". This is illustrated by all the examples in 
Chapter 4. 

                                      3.3.  Procedure  OUTP 

           As already mentioned in section 2.1  and in the introductory part of this chapter, the OUTP 
procedure for processing and saving simulation results belongs to the block of user software 
components. This procedure can be developed individually for each simulation case. However, 
it is possible to develop a typical OUTP program and assign it to Block 5 of the DHM-S. And only 
in the case when the operations included in the typical OUTP procedure do not satisfy the user, 
he will be forced to develop his own version of this procedure. However, the title of the procedure 
(name, list of formal parameters and their types) cannot be changed, because it is determined 
by the call operators in the HARMOSC   and  IMPROVE  procedures 
           The text of a typical (standard) OUTP procedure is as follows. 

       Subroutine OUTP(IG,Y,N,K,NG,M,MK,KK) 
!--   The procedure for processing and memorizing (recording) the results to a file 
!--   with results (with KK=1, the recording volume is minimal) 
!-------------------------------------- 
 Implicit none 
 integer,intent(in)::IG,N,K,NG,M,MK,KK 
 real,dimension(N),intent(in)::Y 
 real,dimension(MK)::XC 
 real,dimension(M)::XV 
  integer::i,j,KG,N1,N2,N3,KNG 
 real::AC,AS,AA 
 KG=(NG-1)/2 
 If (IG.eq.0) then 
      N1=KG; N2=1; N3=2 
  else   
      N1=NG; N2=2; N3=1 
  end if 
  KNG=K*NG 
  call KVGVS(K,Y,NG,KNG,XC,M,MK) 
        do i=1,K 
  write(1,10)i 
  if(IG.ne.0) goto 1 
  write(1,11) Y((i-1)*NG+1) 
     1   do j=1,N1,N2 
      AC=Y((i-1)*NG+N3*j);  AS=Y((i-1)*NG+N3*j+1) 
      AA=sqrt(AC**2+AS**2) 
      write(1,12)i,j,AC,i,j,AS,i,j,AA 
           end do 
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  if(KK.eq.1)goto 2 
  if (IG.eq.0) then 
     write(1,13)M 
  else  
         write(1,14)M 
  end if 
  call DRAWOUTXV(K,XC,MK,M,XV,i) 
  write(1,15)XV 
   2  continue 
       end do  
       write(1,16)Y(K*NG+1) 
        return 
   10 format(2X,'Amplitudes of harmonics of ',i2,'-th variable:') 
   11 format(2X,'constant component = ',E11.4) 
   12 format(2X,'X',i1,'(c',i2,')=',E11.4,' X',i1,'(s',i2,')=',E11.4,'  X',i1,'(',i2,')=',E11.4) 
   13 format(2X,'The value of the variable in nodes of the period, M=',i3') 
   14 format(2X,'The value of the variable in nodes of the half-period, M =',i3) 
   15 format(2X,6E11.4) 
   16 format(2X,'circular frequency of the fundamental harmonic =',E11.4)    
         end Subroutine OUTP 

 
           The formal parameters of the procedure are: 
            IG – variable of integer type; if its value is zero, then it is considered that the variables of 
the problem have constant components and harmonics of both even and odd orders; if its value 
is one, then it is considered that the variable problems have only odd harmonics; 
           Y - a real one-dimensional array formed from the composite vector of amplitudes of 
variables of the form (1.82), the circular frequency of the fundamental harmonic and the 
parameter ; 
           N -  a variable of the integer type, the size of the array Y; 
           K -  a variable of integer type, the order of the system of differential equations, the periodic 
solution of which is sought; 
           NG - an integer type variable, the size of a simple vector of amplitudes; 
           M  -  an integer variable, the number of nodes per period (semi-period), the size of a 
simple nodal vector; 
           MK -  an integer type variable, the size of the complex nodal vector; 
           KK  -  a variable of integer type; if its value is one, then not all data is saved (written to 
the output file), but only part of it. 

                                                      *      *      * 
           The main program of the block of user software components and the OUTP procedure 
can contain statements that implement dialog (when entering data) and multimedia (when 
outputting data in the form of graphs, diagrams, tables, etc.) capabilities of the latest versions of 
Fortran (or other languages - through compatible programming or under "unification of object 
modules as compilation products from these languages). The author leaves these possibilities 
to the user who owns such software tools. 
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                                                                   Chapter 4 

 
TESTS  AND  EXAMPLES 

 
           In this chapter, a number of tests and examples are considered, the purpose of which is 
to illustrate the application of DHM and its software, as well as to perform their verification. 
Among them are both problems that have approximate solutions by analytical methods, and then 
such problems play the role of tests, and problems that cannot be solved by analytical methods. 

 
           4.1. Tests and examples of calculations of forced oscillations 

           This section presents several examples of numerical modeling of forced oscillations in 
nonlinear systems with various types of nonlinear connections in them. These  are examples 
B.1 - B.5. In each example of this group, the fourth element KER(4) of the KER  control array is 
set to 0 (meaning oscillation is forced) before calling the HARMOSC procedure in the main 
program of the user program component block. 

 
4.1.1.  Example (project)  В.1  

           As a test calculation for the case when the nonlinearity in the system is unambiguously 
unconditional (belongs to the first group of nonlinearities) and it is given analytically, we will 
consider  in this project  the calculation   of forced oscillations of a body in a gaseous medium. 
A similar example is given in [56] under number 4.2.1. 
           With a certain idealization, it can be assumed that the resistance force of a moving body 
in a gas medium is proportional to the square of the velocity and has the same sign as the 
velocity of the body (see formula (3.3) and Fig. 3.3). Taking this equation into account, the motion 
of the body has the form 
                                  )sin(2

0 ϕωαω +=++ thxxxx  .                                     (4.1) 
           In [56], when considering this example and determining the oscillation parameters, the 
method of harmonic balance is used (as analytical) and the solution is sought in the form 
 
                                                       tax ωsin=  .                                                   (4.2) 
As a result of substituting (4.2) into (4.1) and a series of analytical transformations, the value of 
the amplitude  a    of oscillations is obtained as the root of the biquadratic equation 
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and the initial phase of the forcing force - by the formula 
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           Formulas (4.1) – (4.7) use the same notation as in [56] when considering example 4.2.1 
there. In particular, in the notation of differential equation (4.1), as before in formula (3.4), one 
dot above the variable means that it is the first derivative of this variable in time, and two dots 
above the variable means that it is the second derivative. 
           If specified by numerical values 

          c/10.10=ω ;        c10.250 =ω ;      
          м10.12=α ;          20.100 смh = ,          

then by formulas (4.4) and (4.7) we obtain     мa 1797,0=   ;       рад335,0=ϕ . 
           We will calculate these same oscillations using the proposed numerical polyharmonic 
modeling using DHM-S. At the same time, we will use the numbers obtained by formulas (4.1) - 
(4.7) as standards for comparison and at the same time evaluate the admissibility of neglecting 
higher harmonics in the analytical solution. 
           Preparation of the task for modeling. 
           We write equation (4.1) in the form 

             ththxxx
dt

dxx
dt
dx

sc ωωαω sincos; 221
2
0

2
2

1 +=++=                 (4.8) 

 
given that 
                                        ththth sc ωωϕω sincos)sin( +=+ .                       (4.9) 

           We calculate the value of the forcing force amplitudes 

                        
./4.94)335.0cos(0.100cos

;/9.32)335.0sin(0.100sin
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c

===

===

ϕ

ϕ
                      (4.10) 

                 We reduce the system of equations (4.8) to the form (1.65) 
 

m; rad. 
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                                                    0=−+ ez
dt
xd 
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                                                    (4.11) 

with designations 
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           The value of the derivative  xdzd  , which is the diagonal block of the composite matrix 
of nodal differential parameters   *

zвS  of the form (1.127b) and is used in the formation of an 
instantaneous mathematical model of the process on a half-cycle (due to the oddity of the 
nonlinear dependence of the resistance force on the speed of body movement in the problem, 
harmonics of only odd orders are present) is as follows  

                                                 
2

2
0 2

10
xxd

zd
αω
−

=




 .                                       (4. 13) 

 
           The project "Example B.1" is implemented in the integrated program development 
environment (platform) Microsoft Developer Studio and its appearance in the window of this 
platform is shown in fig. 4.0. 

 

 
 

Fig. 4.0.  Project B.1  foldere in the window of the integrated environment (platform)  
               Microsoft Developer Studio 
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            Here, the blocks of software components (files Block1.f90, Block2.f90, Block3.f90, 
Block4.f90, Block5.f90), which are described above in chapters  2  and  3, are not formed in the 
form of a separate library (the reader of this book and the user of the method can do it 
independently), so they are present in the project program package. 
           The block of user program components for this project consists of the main Program Gaz 
program and the Model procedure of the instant process model. 
           The main program of the user block is as follows: 
 

          Program Gaz 
!--  The program for determining the periodic solution 
!--   of the differential equation describing the forced 
!--   vibrations of a body in a gaseous environment 
!--       dX/dt+Z=E 
!--       X=colon(x1,x2) 
!--       Z=colon(z1,z2) 
!--       E=colon(e1,e2) 
!--       z1=-x2;    z2=c*x1+Alfa*x2*abs(x2) 
!--       e1=hc*cos(om*t);  e2=hs*sin(om*t). 
!--    (variables contain only odd harmonics) 
!----------------------------------------- 
  Implicit none 
  real,dimension(18)::Y0 
  real,dimension(16)::E 
  integer,dimension(10)::KER 
  real::C,Alfa,OM,EPS1,EPS2,H1,HM,Hc,Hs 
  integer::K,NG,NK 
  common/MP/C,Alfa     !---  shared memory area with the procedure Model 
              open(1,File='DaniGaz.dat',status='old') 
  read(1,*)C,Alfa,Hc,Hs 
  read(1,*)OM,EPS1,EPS2,H1,HM 
!-----  OM – circular frequency of  the fundamental harmonic 
!-----  EPS1 – accuracy of integration 
!-----  EPS2 – accuracy for Newton’s method 
!-----  H1 -  the value of h, at which it is nessesery to specify the root 
!-----  HM -  maximum value h 
  read(1,*)KER 
     read(1,*)K 
!-----  KER – the array of control variables 
!-----  K – the order of the system of differential equations 
          close(1) 
          open(1,file='RezGaz.dat') 
          write(1,5) 
    5  format(4X,'Periodic solution of the equation of vibrations of a body in a gaz'/ 
      & 10X,'Entered data:') 
        write(1,14)C,Alfa,Hc,Hs 
  14 format(2X,' C = ',E10.4,' Alfa =',E10.4,' Hc = ',E10.4,' Hs = ',E10.4) 
        write(1,15)OM,EPS1,EPS2,H1,HM 
   15 format(2X,' OM=',E10.4,' EPS1=',E10.4,' EPS2=',E10.4,' H1=',E10.4,' HM=',E10.4) 
        write(1,16)KER 
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   16 format(2X,’KER =’,10i5) 
        write(1,17)K 
   17 format(2X,' K=',i2) 
        call SizesV(KER(1),K,KER(8),NG,NK) 
        write(1,3)NG,NK 
    3 format(2X,2i5) 
!-----  NG – ther size of the simple vector of amplitudes 
!-----  NK - ther size of the composite vector of amplitudes 
  E=0.;  E(NG+1)=Hc;  E(NG+2)=Hs 
 Y0=0;  Y0(NK+1)=OM 
!--  formed a composite vector E of amplitudes of forces forcing  
!--  and the initial value of the Y0 vector 
        write(1,18) 
   18 format(/2X,'C a l c u l a t I o n :') 
        call HARMOSC(K,Y0,E,NK,HM,H1,EPS1,EPS2,KER) 
        close(1) 
        stop 
       end Program Gaz 

 
          The following objects are described in the descriptive part of the main program: 
           – a real one-dimensional array Y0 , designed to store a column vector formed from two 
simple vectors of amplitudes   ГX1



  and   ГX 2



 form (1.13a), the circular frequency  ω   of the 
fundamental harmonic and the parameter  h ; 
           – real one-dimensional array E, designed to store a composite vector of amplitudes of the 
form (1.81), formed from two simple vectors of amplitudes ГE1



 and ГE2



  form (1.13g); 
           – integer one-dimensional array KER of control variables, which has 10 elements; 
           – real variables C, Alfa, OM - respectively, coefficients 2

0ω ,  α  and frequency ω  from 
equation (4.1); 
           – real variables EPS1, EPS2 – relative accuracy of  −h characteristic calculation and 
solution refinement by Newton's iterative method; 
           – real variables H1,HM – the value of h   at which the solution should be refined and the 
maximum value of h ; 
           – real variables Hc,Hs – cosine and sine amplitudes from formula (4.9); 
           – integer variables K,NG,NK – the order of the system of differential equations (4.8), the 
number of elements of the simple vector of amplitudes and the number of elements of the 
composite vector of amplitudes, respectively. 
            Next, a shared memory area named MP is described, with which the values of  C and 
Alfa  are passed from the main program to the Model  procedure. 
           The operator part of the program begins by opening the DaniGaz.dat  file, which contains 
the input data (a printout of this file is given below). Input data is read from this file by read 
statements, and then the input file is closed. 
           The output file RezGaz.dat  is then opened and the input data just entered is written to it. 
Then, by calling the SizesV  procedure (see section 3.1), the  NG  and  NK  values are determined 
and written to the output file. 
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           Next, values are assigned to the composite vector of the amplitudes of the forcing force 
E  and the initial value of the vector of variables Y0 - the amplitudes of the harmonics are given 
a zero value and the NK+1 element is assigned the value of the circular frequency  ω . 
           Let's comment on the values assigned to the elements of the  KER  array (see DaniGaz.dat 
file printout and section 3.1 below): 
           KER(1)= 1 (because variables  1x   and 2x  contain only odd harmonics); 
           KER(2)= 1 and  KER(3)=0  (because equation (4.8) corresponds to the form of entry (1.65)); 
           KER(4)= 0 (because the oscillation is forced); 
           KER(5)= 0 (assumes that it is not necessary to print the results at each point of the  −h
characteristic); 
           KER(6)= 0 (presupposes that if the  −h characteristic had special points, then after 
passing the first special point, the calculation should be continued); 
           KER(7)= 0 (because the nonlinearity of the problem is hysteresis-free); 
           KER(8)= 1 (assumes that only the first harmonic is taken into account at the first stage of 
the calculation); 
           KER(9)= 7 (presupposes that after obtaining a solution taking into account only the first 
harmonic, the number of considered harmonics should increase from 1 to 7); 
           KER(10)= 1 (suggests that the results should be printed after each increment of the 
number of considered harmonics). 
           By the values of the 8th and 9th elements of the KER  array, the following solution search 
strategy is selected (it is embedded in the HARMOSC procedure): the oscillation in the first 
approximation should be sought as harmonic (only the first harmonic is taken into account), and 
then the solution should be refined by increasing number of considered harmonics. 
           The main program ends with a call to the HARMOSC  procedure. 
           The Model procedure, which implements the instantaneous model of the half-cycle 
process, has the following form: 
 

            Subroutine Model(AL,M,K,MK,XC,YC,ZC,YXC,ZXC,BM) 
!—The procedure of the instantaneous (half-period) process model 
 implicit none 
 real::AL 
 integer,intent(in)::M,K,MK 
 real,dimension(MK)::XC,YC,ZC 
 real,dimension(MK,K)::YXC,ZXC 
 real,dimension(K)::X,Z 
 real,dimension(K,K)::ZX,BM 
 real::C,Alfa 
 integer::i 

 common/MP/C,Alfa  !—a shared area of memory  with the main program 
 BM(1,1)=0.;  AL=0.        !—statements for blocking 
 YC(1)=0.;  YXC(1,1)=0.   !—compiler notes 
 do i=1,M 
     call DRAWOUTV(K,XC,MK,X,i) 
     Z(1)=-X(2);   Z(2)=C*X(1)+Alfa*X(2)*abs(X(2)) 
       ZX(1,1)=0.;   ZX(1,2)=-1.;  ZX(2,1)=C;   ZX(2,2)=2.*Alfa*abs(X(2)) 
     call DRAWUPV(K,Z,ZC,MK,i) 
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     call DRAWUPM(K,ZX,ZXC,MK,i) 
 end do 
 return 
 end  subroutine Model 
 
           The interface of the Model procedure (name and list of formal parameters) is defined by 
the CALCULU  procedure (see section 2.2.3.2). 
           The formal parameters of the Model procedure are: 
           - real variable AL is expansion coefficient of the hysteresis loop; is not used in this 
problem, because there are no hysteresis nonlinearities of the third group in the problem; 
           - integer variable  M  is the number of nodes per half-cycle; 
           - the integer variable  K  is the order of the system of equations (4.8); 
           - integer variable MK  is the size of the composite nodal vector; 
           - real one-dimensional arrays XC,YC,ZC – respectively, composite nodal vectors *

вx , *
вy   

and  *
вz
 of the form (1.118); in this problem, the YC array is not used, because equation (4.11) 

has the form (1.65) and does not contain the variable y ; 
           - real two-dimensional arrays YXC, ZXC – composite matrices of nodal differential 
parameters  *

yвS  and  *
zвS  form (1.127); in this problem, the YXC  matrix is not used, because, 

as already mentioned above, equation (4.11) has the form (1.65); 
           - two-dimensional array BM – matrix of coefficients of the system of differential equations, 
if they are of the form (1.66) or (1.67); in this problem, this matrix is not used, because equation 
(4.11) has the form (1.65). 
           These formal parameters are used to pass data from the CALCULU procedure to the 
Model procedure. Some data is also passed to the Model procedure from the main program using 
a shared memory area called MP. 
           The operative part of the procedure is opened by two operators 

 
                                   BM(1,1)=0.;   AL=0.  
. 

           These operators perform unnecessary assignments. Their purpose is to block the 
compiler's message when compiling the procedure that the formal parameters BM  and  AL in 
the body of the procedure are not used. It was already noted above that the AL parameter is 
intended for use only in the case when the problem has hysteresis-type nonlinearities. There 
are none in this problem, so this parameter is not used. The  BM  parameter is provided for use 
in the case when the system of differential equations is not written in the normal Cauchy form. 
In the notation (4.11), the system of equations (4.8) has the normal Cauchy form, so the BM 
parameter is not used here. 
           The same purpose (to block compiler messages) and the following two operators 
         YC(1)=0.;   YXC(1,1)=0. 
 

In this case, the equation (4.11) does not contain the vector , so the complex nodal vector YC 
and the matrix of nodal parameters YXC  provided by the procedure are not used. 
           Since the nonlinearity of the problem belongs to the first group - it is unconditionally 
unique (see section 3.2.1), the calculation of the values of the elements of the composite nodal 
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vector ZC  and the composite matrix of nodal parameters  ZXC  can occur in an arbitrary 
sequence. This sequence is specified by the loop operator, in which the loop parameter (variable 
i – the number of the node in the half-cycle) changes from 1 to M. In the loop, for each value of 
i, the following actions are performed. The call DRAWOUTV(K,XC,MK,X,i)  operator calls the 
DRAWOUTV procedure (it is included in Block 5 of the DHM-S), which extracts the values of the 
variables in the i-th node from the composite nodal vector XC, which has MK elements in the 
form of a vector X with K elements (here - two). Next, values are calculated and assigned to the 
elements of the vector Z (4.12b) and the derivative matrix ZX (4.13). After that, call 
DRAWUPV(K,Z,ZC,MK,i) and call DRAWUPM(K,ZX,ZXC,MK,i) operators are called to perform the 
procedure DRAWUPV and DRAWUPM (they are included in Block 5 of the DHM-S), which assign 
the values of the elements of the matrices Z and ZX to the corresponding elements of the matrices 
ZC and ZXC (see sections 3.2.2.1, 3.2.2.3 and 3.2.2.4). 
           The  DaniGaz.dat  input file looks like this: 
  625.   12.   32.9    94.4 
  10.   0.001   0.0001   1.0    1.0 
 1  1  0  0  0  0  0  1  7  1 
  2 

 
           The RezGaz.dat  source data file - calculation results after the program has been run is as 
follows: 
Periodic solution of the edquation of vibrations of a body in gaz 
          Entered data: 
   C = .6250E+03 Alfa = .1200E+02  Hc = .3290E+02  Hs = .9440E+02 
   OM= .1000E+02 EPS1= .1000E-02 EPS2= .1000E-03 H1= .1000E+01  
   HM = .1000E+01 
   KER =  1    1    0    0    0    0    0    1    7    1 
   K= 2 
      2    4 
 
  C a l c u l a t i o n : 
  Number of the highes harmonic =  1 
      Refined value of 1 root for h=1.000 
  (the solution was obtained after the 3th iteration) 
  Amplitudes of harmonics of the 1st variable: 
  X1(c1)= -.5008E-04  X1(s1)=  .1798E+00  X1(1)=  .1798E+00 
 
  The value of the variable in nodes of half-period, M = 24 
 -.5008E-04 .2342E-01 .4649E-01  .6876E-01  .8985E-01  .1094E+00 
  .1271E+00 .1426E+00 .1557E+00  .1661E+00  .1737E+00  .1782E+00 
  .1798E+00 .1783E+00 .1737E+00  .1661E+00  .1557E+00  .1427E+00 
  .1272E+00 .1095E+00 .8994E-01  .6885E-01  .4658E-01  .2352E-01 
 
  Amplitudes of harmonics of the 2st variable: 
  X2(c1)=  .1798E+01  X2(s1)=  .5005E-03  X2(1)=  .1798E+01 
 
  The value of the variable in nodes of half-period, M = 24 
  .1798E+01 .1783E+01 .1737E+01  .1661E+01  .1557E+01  .1427E+01 
  .1272E+01 .1095E+01 .8994E+00  .6885E+00  .4658E+00  .2352E+00 
  .5028E-03-.2342E+00-.4649E+00 -.6876E+00 -.8985E+00 -.1094E+01 
 -.1271E+01-.1426E+01-.1557E+01 -.1661E+01 -.1737E+01 -.1782E+01 
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  Refinement of the value of the root by increasing the number of 
  harmonics from N= 1 to N= 7 
 
 Added 3rd harmonic 
  Amplitudes of harmonics of the 1st variable: 
  X1(c 1)=  .9549E-03  X1(s1)=  .1815E+00  X1(1)=  .1815E+00 
  X1(c 3)=  .2189E-02  X1(s3)= -.6959E-02  X1(3)=  .7296E-02 
 
  Amplitudes of harmonics of the 2st variable:   
  X2(c 1)=  .1815E+01  X2(s1)= -.9549E-02  X2(1)=  .1815E+01 
  X2(c 3)= -.2088E+00  X2(s3)= -.6567E-01  X2(3)=  .2189E+00 
 
added 5rd harmonic 
  Amplitudes of harmonics of the 1st variable: 
  X1(c1)=  .6234E-03  X1(s1)=  .1821E+00  X1(1)=  .1821E+00 
  X1(c3)=  .2712E-02  X1(s3)= -.6942E-02  X1(3)=  .7453E-02 
  X1(c5)= -.1029E-02  X1(s5)=  .4554E-03  X1(5)=  .1126E-02 
 
  Amplitudes of harmonics of the 2st variable: 
  X2(c1)=  .1821E+01  X2(s1)= -.6234E-02  X2(1)=  .1821E+01 
  X2(c3)= -.2083E+00  X2(s3)= -.8136E-01  X2(3)=  .2236E+00 
  X2(c5)=  .2278E-01  X2(s5)=  .5147E-01  X2(5)=  .5628E-01 
 
added 7rd harmonic 
  Amplitudes of harmonics of the 1st variable: 
  X1(c1)=  .5420E-03  X1(s1)=  .1822E+00  X1(1)=  .1822E+00 
  X1(c3)=  .2783E-02  X1(s3)= -.6892E-02  X1(3)=  .7433E-02 
  X1(c5)= -.1051E-02  X1(s5)=  .3961E-03  X1(5)=  .1123E-02 
  X1(c7)=  .2339E-03  X1(s7)=  .4659E-04  X1(7)=  .2385E-03 
 
  The value of the variable in nodes of half-period, M = 48  
  .2508E-02 .1320E-01 .2383E-01  .3439E-01  .4486E-01  .5523E-01 
  .6548E-01 .7559E-01 .8554E-01  .9529E-01  .1048E+00  .1140E+00 
  .1229E+00 .1315E+00 .1396E+00  .1473E+00  .1545E+00  .1612E+00 
  .1674E+00 .1730E+00 .1779E+00  .1821E+00  .1854E+00  .1879E+00 
  .1894E+00 .1898E+00 .1891E+00  .1872E+00  .1840E+00  .1797E+00 
  .1743E+00 .1678E+00 .1604E+00  .1522E+00  .1434E+00  .1340E+00 
  .1243E+00 .1143E+00 .1041E+00  .9368E-01  .8319E-01  .7262E-01 
  .6198E-01 .5128E-01 .4054E-01  .2978E-01  .1900E-01  .8233E-02 
 
  Amplitudes of harmonics of the 2st variable: 
  X2(c1)=  .1822E+01  X2(s1)= -.5420E-02  X2(1)=  .1822E+01 
  X2(c3)= -.2068E+00  X2(s3)= -.8349E-01  X2(3)=  .2230E+00 
  X2(c5)=  .1981E-01  X2(s5)=  .5257E-01  X2(5)=  .5617E-01 
  X2(c7)=  .3263E-02  X2(s7)= -.1638E-01  X2(7)=  .1670E-01 
 
  The value of the variable in nodes of half-period, M = 48 
  .1638E+01 .1630E+01 .1619E+01  .1607E+01  .1592E+01  .1576E+01 
  .1556E+01 .1533E+01 .1506E+01  .1473E+01  .1433E+01  .1387E+01 
  .1334E+01 .1275E+01 .1210E+01  .1140E+01  .1065E+01  .9840E+00 
  .8969E+00 .8018E+00 .6968E+00  .5800E+00  .4498E+00  .3053E+00 
  .1470E+00-.2346E-01-.2029E+00 -.3870E+00 -.5705E+00 -.7478E+00 
 -.9135E+00-.1063E+01-.1194E+01 -.1303E+01 -.1391E+01 -.1460E+01 
 -.1511E+01-.1548E+01-.1575E+01 -.1595E+01 -.1609E+01 -.1621E+01 
 -.1630E+01-.1638E+01-.1643E+01 -.1646E+01 -.1646E+01 -.1644E+01 
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          The results of the calculations are summarized in Table 4.1. 
 

Table 4.1.  Results of calculation   of body vibrations in a gaseous environment  
 

n )1(1X  )3(1X  )5(1X  )7(1X  )1(2X  )3(2X  )5(2X  )7(2X  
1 0,1798    1,798    
3 0,1815 0,0073   1,815 0,2188   
5 0,1821 0,0074 0,0011  1,821 0,2236 0,0563  
7 0,1822 0,0074 0,0011 0,0002 1,822 0,2230 0,0562 0,0167 

       As we can see from table 4.1, taking into account only the first harmonic, the obtained value 
of the amplitude up to the third sign coincides with the one obtained by formula (4.4). Taking into 
account the higher harmonics up to and including the seventh, the amplitude of the first harmonic 
increases slightly - by 1.3%. Higher harmonics here are more pronounced in the variable  2x , 
that is, in the speed of movement: the amplitude of the third harmonic of the speed of movement 
is 12% of the value of the amplitude of the first harmonic. The table illustrates that in this problem 
harmonics with orders greater than 7 can be neglected in calculations. 
       The above result of the calculation of the forced vibrations of a body in a gas medium, taking 
into account the 7th harmonics inclusive, can be represented by formulas. Thus, the time 
dependence of a variable   2x  (body movement speed) can be expressed by a formula 
          2x [ t ]=1.822 cos(10.0 t) – 0.00542 sin(10.0 t) – 0.2068 cos(30.0 t) – 0.08349 sin(30.0 t) + 
                       + 0.01981 cos(50.0 t) + 0.0527 sin(50.0 t) + 0.003263 cos(70.0 t) – 0.01638 sin(70.0 t) .  

                                   4.1.2.  Example  В.2  

          This example illustrates the calculation of forced oscillations when the nonlinearity in the 
system is given analytically and is uniquely unconditional (belongs to the first group of 
nonlinearities, see section 3.2.1), and the differential equation describing the oscillations has not 
one periodic solution, but three periodic solutions. This is an equation  
                                           thxbxbx ωcos3

21 =++   ,                                    (4.14)                     
 
which is known in the literature as one of the Duffing equations [65]. In particular, it describes 
[76] in mechanics - the movement of a load on a spring with nonlinear stiffness, in nuclear 
physics - the movement of a particle in a potential field with two potential wells. 
           We reduce equation (4.14) to the form (1.65): 

                                                         0=−+ ez
dt
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           The value of the derivative xdzd  , which is necessary in the formation of an 
instantaneous (half-period) mathematical model, is as follows 
 

                                                   
1

2
123

10
bxbxd

zd −
=




.                                        (4.16)   

 
            Let's set the following values of coefficients and circular frequency: 
                                                0.1;0.1;2.0 21 === ωbb    
and obtain the solution by numerical simulation using DHM-S. 
           The Program Duffing main program and the Model procedure from the user program 
component block for this case look like this: 
 

 
    Program Duffing 

!--  Program for determining periodic solutions of the Duffing’s equation 
!--     dX/dt+Z=E 
!--     X=colon(x1,x2) 
!--     Z=colon(z1,z2) 
!--     E=colon(e1,e2) 
!--     z1=-x2;    z2=b1*x2+b2*x1**3 
!--     e1=0;  e2=h*cost. 
!--  (variables contain only odd harmonics) 
  Implicit none 
  real,dimension(14)::Y0 
  real,dimension(12)::E 
  integer,dimension(10)::KER 
  real::B1,B2,OM,EPS1,EPS2,H1,HM 
  integer::K,NG,NK 
  common/MP/B1,B2    !----- shared memory area with the procedure Model 
              open(1,File='DaniDuf.dat',status='old') 
  read(1,*)B1,B2 
  read(1,*)OM,EPS1,EPS2,H1,HM 
!-----  OM – circular frequency of the fundamental harmonic 
!-----  EPS1 -  accuracy of integfration 
!-----  EPS2 – accuracy for Newton’s method 
!-----  H1 – the value of h, at which the ruquired duck root 
!-----  HM – maximum value h 
  read(1,*)KER 
     read(1,*)K 
!-----  KER – array of control variables 
!-----  K – the order of the system of differential equations 
  close(1) 
          open(1,file='RezDuf.dat') 
  write(1,5) 
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     5 format(4X,'Periodic solutions of the Duffing’s equation’ /10X,'Entered data:') 
  write(1,14)B1,B2 
   14 format(2X,' B1=',E10.4,' B2=',E10.4) 
  write(1,15)OM,EPS1,EPS2,H1,HM 
   15 format(2X,' OM=',E10.4,' EPS1=',E10.4,' EPS2=',E10.4,' H1=',E10.4,' HM=',E10.4) 
  write(1,16)KER 
   16 format(2X,’KER=’,10i5) 
    write(1,17)K 
   17 format(2X,' K=',i2) 
     3  format(2X,10I5) 
     call SizesV(KER(1),K,KER(8),NG,NK) 
  write(1,3)NG,NK 
!-----  NG – the size of the simple vector of amplitudes 
!-----  NK - the size of the composite vector of amplitudes 
  E=0.;   E(NG+1)=1.0 
  Y0=0;  Y0(NK+1)=OM 
!--  Formed the vector of amplitudes  Е  of forcing forces 
!--  and the initial value of the Y0 vector 
      write(1,13) 
   13 format(/2X,'C a l c u l a t I o n :') 
        call HARMOSC(K,Y0,E,NK,HM,H1,EPS1,EPS2,KER) 
        cose(1) 
        stop 
        end Program Duffing 
!--------------------------- 
      Subroutine Model(AL,M,K,MK,XC,YC,ZC,YXC,ZXC,BM) 
!--  The procedure of the instantaneous half-period process model 
   Implicit none 
  real::AL 
  integer,intent(in)::M,K,MK 
  real,dimension(MK)::XC,YC,ZC 
  real,dimension(MK,K)::YXC,ZXC 
  real,dimension(K)::X,Z 
  real,dimension(K,K)::ZX,BM 
  real::B1,B2 
  integer::i 
  common/MP/B1,B2      !--  A shared area of memory with the main program 
   BM(1,1)=0.;  AL=0. 
  YC(1)=0.;  YXC(1,1)=0. 
  do i=1,M 
    call DRAWOUTV(K,XC,MK,X,i) 
    Z(1)=-X(2) 
    Z(2)=B1*X(2)+B2*X(1)**3 
    ZX(1,1)=0.;    ZX(1,2)=-1. 
    ZX(2,1)=3.*B2*X(1)**2; ZX(2,2)=B1 
    call DRAWUPV(K,Z,ZC,MK,i) 
    call DRAWUPM(K,ZX,ZXC,MK,i) 
  end do 
  return 
  end  subroutine Model 



131 
 

    
          The RezDuf.dat file, designed to save the results, receives the following data after the 
program has been run: 
 
       Periodic solutions of the Duffing’s equation 
          Entered data: 
   B1= .2000E+00 B2= .1000E+01 
   OM= .1000E+01 EPS1= .1000E-02 EPS2= .1000E-03 
   H1= .3000E+00 HM= .6000E+00 
   KER =  1    1    0    0    0    0    0    5    0    0 
     K = 2 
        6   12 
  C a l c u l a t i o n : 
  Number of the highest harmonic =  5 
     ---------------------------------------- 
  Refined value 1 root at h= .300 
  (the solution was obtained after the  3-rd iteration) 
 
  Amplitudes of harmonics  of the  1-st variable: 
  X1(c1)= -.3100E+00   X1(s1)=  .6709E-01   X1(1)=  .3172E+00 
  X1(c3)= -.6841E-03   X1(s3)=  .5845E-03   X1(3)=  .8998E-03 
  X1(c5)= -.1062E-05   X1(s5)=  .2510E-05   X1(5)=  .2725E-05 
 
  Amplitudes of harmonics  of the  2-st variable: 
  X2(c1)=  .6709E-01   X2(s1)=  .3100E+00   X2(1)=  .3172E+00 
  X2(c3)=  .1753E-02   X2(s3)=  .2052E-02   X2(3)=  .2699E-02 
  X2(c5)=  .1262E-04   X2(s5)=  .5290E-05   X2(5)=  .1369E-04 
       ---------------------------------------- 
 Refined value 2 root at h= .300 
  (the solution was obtained after the  2-rd iteration) 
 
  Amplitudes of harmonics  of the  1-st variable: 
  X1(c1)= -.7394E+00  X1(s1)=  .6751E+00   X1(1)=  .1001E+01 
  X1(c3)=  .2232E-01  X1(s3)=  .2497E-01   X1(3)=  .3349E-01 
  X1(c5)=  .8579E-03  X1(s5)= -.6993E-03   X1(5)=  .1107E-02 
 
  Amplitudes of harmonics  of the  2-st variable: 
  X2(c1)=  .6751E+00   X2(s1)=  .7394E+00   X2(1)=  .1001E+01 
  X2(c3)=  .7491E-01   X2(s3)= -.6696E-01   X2(3)=  .1005E+00 
  X2(c5)= -.3495E-02   X2(s5)= -.4290E-02   X2(5)=  .5533E-02 
     ---------------------------------------- 
 Refined value 3 root at h= .300 
  (the solution was obtained after the  3-rd iteration) 
 
  Amplitudes of harmonics  of the  1-st variable:         
    X1(c1)=  .6864E+00   X1(s1)=  .9841E+00  X1(1)=  .1200E+01 
  X1(c3)= -.5973E-01   X1(s3)=  .2146E-01  X1(3)=  .6347E-01 
  X1(c5)= -.1277E-03   X1(s5)= -.3154E-02  X1(5)=  .3157E-02 
 
  Amplitudes of harmonics  of the  2-st variable: 
  X2(c1)=  .9841E+00   X2(s1)= -.6864E+00  X2(1)=  .1200E+01 
  X2(c3)=  .6438E-01   X2(s3)=  .1792E+00  X2(3)=  .1904E+00 
  X2(c5)= -.1577E-01   X2(s5)=  .6382E-03  X2(5)=  .1578E-01 
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           It should be noted that in this case, the KER(5) element of the KER control array was 
assigned a zero value, and therefore all   −h characteristic points, except for 1hh =  , were 
not recorded in the RezDuf.dat  array. If we set the value 1 to the element KER(5), then it would 
be possible to trace that the −h characteristic when changing   h   from zero to 0.6 has a loop-
like character and two special points, which the algorithm of the HARMOSC procedure 
successfully passed, using the technique of inverting differential equations (see section 1.5.7). 
The  −h characteristic passed through the point  3.01 == hh  three times, and thus all three 
periodic solutions of equation (4.14) were found. Each of the solutions is refined by Newton's 
iterative method. 
           When solving this problem, the KER(9) element of the KER control array was assigned a 
value of zero, and the KER(8) element was assigned a value of  5, i.e., the following strategy for 
finding a solution was set: as a polyharmonic oscillation with the first, third, and nth harmonics 
without further increasing the number of harmonics taken into account. 
 

                                     4.1.3.  Example В.3   
 

        In the previous section, the numerical modeling of forced oscillations was considered, 
when the nonlinearity in the system is given analytically and is unambiguously unconditional 
(belongs to the first group), and the differential equation to be solved has three periodic solutions. 
In the example considered in this section, forced nonlinear oscillations in an object with 
unambiguous unconditional nonlinearity are also modeled, but here it is not specified 

analytically, but by a table. The differential equations 
describing the considered oscillations, at certain parameter 
values, also have, as in the previous example, three periodic 
solutions. 
               This example is a calculation of the characteristics 
of a simple series ferroresonant circuit shown in Fig. 4.1, 
which is formed from a linear active resistance r , a 
nonlinear inductance (saturation choke) with magnetization  
characteristic ][iφφ =   and capacitance  C  [11]. The 
sought characteristic of the circuit is the dependence of the 
effective value  I  of its current on the amplitude of the 
applied voltage mU . 

                The processes in this circuit are described by the following equations: 
                                                                                                                              .                                                       
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where  i   –  circuit current;  φ   –  flux coupling  of the coil;   cu  – capacitor voltage. 
              This system of differential equations is reduced to the form of notation of the vector 
differential equation (1.64), if we accept 
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  The matrices of "instant" differential parameters for this case have the form 
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           In [39], the calculation of nonlinear oscillations in the figure shown in Fig. 4.1 circuit (in 
[39] it is Fig. 3.29) by the analytical method of slowly changing amplitudes when approximating 
the magnetization characteristic of choke by the formula 

 
                                   )(][ 3

00 iiLi γφ −= ,                                            (4.20) 
 

where  −00 ,γL  constants. It is also noted that with such an approximation of the magnetization 
curve, the result can be considered adequate for the process in the circuit only when the current 
changes in the interval of its values, in which dependence (4.20) satisfactorily approximates the 
real magnetization curve. However, before calculating the oscillations, the range of possible 
current values is unknown in advance. Difficulties with the selection of analytical approximations 
of nonlinearities of magnetization curves progressively increase with the complexity of the circuit, 
which can be multi-circuit and contain several chokes (coils). 

When numerically modeling periodic processes in the scheme of fig. 4.1 with the use of 
DHM-S, the non-linearity of the scheme - the dependence of the flux lincage    φ   of choke on 
the circuit current  i  - is given by the table using interpolation. 
           It should be noted that the algorithms for calculating periodic processes by the differential-
harmonic method are insensitive to the smoothness of the functions used to approximate the 
characteristics of nonlinear elements. And if in the numerical integration over time of nonlinear 
differential equations (calculation of transient processes) it is necessary to use sufficiently 
smooth interpolation polynomials of the second and higher degrees, including quadratic and 
cubic splines [48], then in the calculation of periodic processes by the differential-harmonic 
method for the approximation of nonlinear characteristics it is perfectly permissible to use tables 
and perform linear interpolation, i.e. approximate them with a broken lines (see clause 2.2.4.2). 
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           The block of user software components for calculating the characteristics of the 
ferroresonance circuit consists of: the main program Program Ferorez  and the  Model  procedure 
of the instantaneous model of the process on one half-cycle. 
              The standard OUTP procedure is used to process the results and store them (it is 
included in Block 5 of the DHM-S), so it is not included in the block of user software components. 
              Next is a printout of the main Program Ferorez program of the block of user software 
components. 
 

      Program Ferorez 
!-- Characteristic calculation program  ferroresonance circuit 
!-- by determining periodic solutions X=X(t) vector nonlinear differential equation 
!-- states of the ferroresonance circuit 
!--     dY/dt+Z=E 
!--     X=colon(x1,x2) 
!--     Y=colon(y1,y2) 
!--     Z=colon(z1,z2) 
!--     E=colon(e1,e2) 
!--     x1=i (current);  x2=Uc (capacitor voltage) 
!--     y1=Psi (flux lincage);  y2=Uc 
!--     z1=R*i+Uc;    z2=-i/C,  С - capacitor,  R - resistance 
!--     e1=h*Um*sin(OM*t);  e2=0. 
!--  (the loop current contains only odd harmonics) 
!----------------------------------------- 
  Implicit none 
  real,dimension(14)::Y0 
  real,dimension(12)::E 
  integer,dimension(10)::KER 
  real,dimension(30)::H 
  real::B0,STEP,Um,R,C,OM,H1,HM,EPS1,EPS2 
  integer::NT,K,NG,NK,i 
  common/MP/H,NT,B0,STEP,R,C   !----- common area with procedure Model 
              open(1,File='DaniFer.dat',status='old') 
  Read(1,*)NT 
  Read(1,*)B0,STEP 
  Read(1,*)(H(i),i=1,NT)    
  Read(1,*)Um,R,C,OM 
  Read(1,*)H1,HM,EPS1,EPS2 
  Read(1,*)KER 
     Read(1,*)K 
  Close(1) 
              open(1,file='RezFer.dat') 
  write(1,5) 
     5 format(4X,'Entered data:') 
  write(1,10) 
   10 format(2X,'Weber-ampere characteristic of the choke:')   
  write(1,3)NT 
  write(1,4)B0,STEP 
  write(1,4)(H(i),i=1,NT) 
  write(1,11) 
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   11 format(2X,'Other circle parameters:') 
  write(1,14)Um,R,C,OM 
   14 format(2X,'Um=',E10.4,' R=',E10.4,' C=',E10.4,'OM=',E10.4) 
  write(1,12) 
   12 format(2X,'Other data:') 
  write(1,15)H1,HM,EPS1,EPS2 
   15 format(2X,' H1=',E10.4,' HM=',E10.4 /2X,'EPS1=',E10.4,' EPS2=',E10.4) 
  write(1,3)KER 
    write(1,17)K 
   17 format(2X,' K=',i2) 
     3 format(2X,10I5) 
     4 format(2X,4E12.4) 
      call SizesV(KER(1),K,KER(8),NG,NK) 
  write(1,3)NG,NK 
!-----  NG – the size of the simple vector of amplitudes 
!-----  NK - the size of the composite vector of amplitudes   
              E=0.; E(1)=Um 
  Y0=0;  Y0(NK+1)=OM 
!-- Formed the amplitude vector E of the coercive forces 
!-- and the initial value of the Y0 vector. 
        write(1,13) 
   13 format(/2X,'C a l c u l a t I o n :') 
         call HARMOSC(K,Y0,E,NK,HM,H1,EPS1,EPS2,KER) 
        close(1) 
        stop 
        end Program Ferorez 

 
           The main program of this package performs: 
            - description of variables, including description and declaration of sizes of two arrays: 
Y0(14)  and  E(12). Y0 is a column matrix formed from a vector of current amplitudes, a vector of 
capacitance voltage amplitudes, a circular frequency   ω   and a parameter  h . The specified 
dimensions of these arrays allow you to set the maximum order of the harmonics taken into 
account no higher than 5 (harmonics of odd orders only are taken into account). If a higher value 
of the maximum harmonic order is specified, the sizes of these arrays must be increased; 
          - a description of the shared memory area /MP/, which is used to transfer data to the Model 
procedure: the magnetization curve table (H – the table of the nonlinear part of the characteristic, 
NT – the number of nodes in the table, B0 – the first value of the abscissa of the nonlinear part, 
STEP – the step of the table ), active resistance R  and capacitance  C; 
          - entering input data from the DaniFer.dat file; 
          - output to the RezFer.dat  output file of input data; 
          - appeal to the SizesV  procedure; 
          - formation of the forcing force vector  E; 
          - assignment of the initial value of the Y0  array; 
          - referring to the HARMOSC procedure for calculating the h-characteristic and specifying 
the solution for the given value of  h . 
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          Next is a printout of the Model  procedure, which implements an instantaneous (half-
period) model of the periodic process in the scheme. 
 

      Subroutine Model(AL,M,K,MK,XC,YC,ZC,YXC,ZXC,BM) 
!--  The procedure of the "instant" model of the process on one half-cycle 
!------------------- 
 implicit none 
 real::AL 
 integer,intent(in)::M,K,MK 
 real,dimension(MK)::XC,YC,ZC 
 real,dimension(MK,K)::YXC,ZXC 
 real,dimension(K)::X,Y,Z 
 real,dimension(K,K)::YX,ZX,BM 
 real,dimension(30)::H 
 integer::NT,i 
 real::B0,STEP,R,C,LD 
 common/MP/H,NT,B0,STEP,R,C 
!--  A shared area of memory with the main program 
 BM(1,1)=0.; AL=0. 
 do i=1,M 
   call DRAWOUTV(K,XC,MK,X,i) 
   call INTLIN(X(1),Y(1),LD,B0,STEP,H,NT) 
!----- by interpolation calculated Y(1)=Psi and derivative LD=dPsi/di 
       Y(2)=X(2) 
   Z(1)=R*X(1)+X(2) 
   Z(2)=-X(1)/C 
   YX(1,1)=LD 
   YX(1,2)=0. 
   YX(2,1)=0. 
   YX(2,2)=1. 
   ZX(1,1)=R 
   ZX(1,2)=1. 
   ZX(2,1)=-1./C 
   ZX(2,2)=0. 
   call DRAWUPV(K,Y,YC,MK,i) 
   call DRAWUPV(K,Z,ZC,MK,i) 
   call DRAWUPM(K,YX,YXC,MK,i) 
   call DRAWUPM(K,ZX,ZXC,MK,i) 
   end do 
 return 
 end  Subroutine Model 

 
           The first two executed statements of the procedure BM(1,1)=0. and AL=0. perform 
unnecessary operations and are present only in order not to provoke comments by the compiler, 
because the formal parameters BM  and AL  are not used here: the parameter BM  is not used 
because equation (4.17) does not have a matrix of coefficients, that is, it does not have the form 
(1.66) or (1.67), and the AL parameter is not used, because there are no elements in the problem 
with hysteresis characteristics. 
           The main operator of the model is the cycle operator, in which the variable  i   is the 
number of a node in a half-cycle. In this cycle, the following is performed: 
           – the  call DRAWOUTV(K,XC,MK,X,i)  operator calls the DRAWOUTV  procedure (it is included 
in Block 5 of the DHM-S) for execution, which “extracts” the values of the variables   1x  (circuit 
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current) and  2x   (condenser voltage) from the composite nodal vector ) in the i -th node of the 
half-period and forms a vector  x   from them; 
          - the operator   call INTLIN(X(1),Y(1),LD,B0,STEP,H,NT)   is called for execution the INTLIN 
procedure (it is included in Block 4 of the DHM-S), which, by means of linear interpolation, 
determines from the table that the choke magnetization curve, the value of flux lincage of choke 
and differential inductance is specified by it; 

– a group of assignment operators gives values to arrays Y, Z, YX and ZX, according to 
 formulas (4.18) and (4.19); 

            – operators  call DRAWUPV(K,Y,YC,MK,i);   call DRAWUPV(K,Z,ZC,MK,i)   the elements of the 
arrays Y and Z are "inserted" into the arrays YC and ZC (the latter store the values of the 
composite nodal vectors of the form (1.118)) in places corresponding to the i -th node of the 
half-period; 

      – operators   call DRAWUPM(K,YX,YXC,MK,i);   call DRAWUPM(K,ZX,ZXC,MK,i)  the elements 
of the YX and ZX arrays are "inserted" into the YXC and ZXC arrays (the latter store the values 
of the composite matrices of nodal differential parameters of the form (1.127) ) in the places 
corresponding to the i -th node of the half-period. 

           Printout of DaniFer.dat  file with input data: 
 
11 
1.0 0.2 
0.1   0.115   0.126   0.135   0.142   0.148   0.153   0.157 
0.16   0.162   0.1635 
100.   0.3   0.001   314.16 
0.32   0.5   0.01   0.001 
  1   0   0   0   1   0   0   5   0   0 
  2 

 
 The first four lines of this file are the numerical data 
of the tabulated choke magnetization curve shown in 
Fig. 4.2. The number 11 in the first line is the number 
of table nodes. Two numbers in the second line: 1.0 – 
the value of the current from which the nonlinear part 
begins; 0.2 - table step (table with equidistant nodes). 
The next 11 numbers in the third and fourth lines are 
the value of the flow coupling of the throttle in the 
nodes of the table. Fifth line: 100.0 - for   mU ; 0.3 – 
for r ;  0.001 – for  C ; 314.16 - for  ω .  The sixth 
line: 0.32 – for H1 (the value of the parameter  h   at 
which the solution should be refined by Newton's 

method); 0.5 – for HM (maximum parameter value  h ); 0.01 - for the accuracy  1ε  of the 
characteristic calculation; 0.001 - for accuracy 2ε  when refining by Newton's method. The 
seventh line is the value of the elements of the KER control array: the first number is 1 - the 
variables contain only odd harmonics; the second and third numbers are 0 and 0 - the system 
of equations (4.17) is reduced to the form (1.64); fourth number 0 – oscillations are forced; fifth 

     Fig. 4.2. Choke magnetization curve  

Web 
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number 1 - it is necessary to print data for all −h characteristic points; the sixth number is 0 – 
there is no need to stop the calculation upon reaching the first special point; the seventh number 
is 0 – there are no hysteresis characteristics in the problem; the eighth number 5 is the number 
of the highest harmonic taken into account; the ninth and tenth numbers 0 and 0 – no increase 
in the number of considered harmonics is assumed, the solution is immediately sought as a 
polyharmonic oscillation with harmonics from the first to the fifth without a subsequent increase 
in the number of considered harmonics. 
          The following is a printout of the RezFer.dat  file with the output data (result): 
 
     Entered data: 
  Weber-ampere characteristic of the choke: 
     11 
     .1000E+01   .2000E+00 
     .1000E+00   .1150E+00   .1260E+00   .1350E+00 
     .1420E+00   .1480E+00   .1530E+00   .1570E+00 
     .1600E+00   .1620E+00   .1635E+00 
  Other circle parameters: 
  Um = .1000E+03 R = .3000E+00 C = .1000E-02 OM = .3142E+03 
  Other data: 
   H1 = .3200E+00 HM = .5000E+00 
  EPS1 = .1000E-01  EPS2 = .1000E-02 
   KER =   1    0    0    0    1    0    0    5    0    0 
   K = 2 
   NG = 6     NK = 12 
 
  C a l c u l a t i o n : 
  Number of the highest harmonic =  5 
   The h-characteristic is calculating 
 
  Parameter h=  .05100, at this step variable 14 is independent  
  Amplitudes of harmonics of the 1-st variable: 
  X1(c1)=  .1919E-02  X1(s1)=  .1806E+00  X1(1)=  .1806E+00 
  X1(c3)= -.1000E-07  X1(s3)= -.1282E-07  X1(3)=  .1626E-07 
  X1(c5)= -.9916E-08  X1(s5)=  .6184E-08  X1(5)=  .1169E-07 
  Amplitudes of harmonics of the 2-st variable: 
  X2(c1)= -.5748E+00  X2(s1)=  .6106E-02  X2(1)=  .5748E+00 
  X2(c3)= -.8978E-06  X2(s3)=  .1498E-06  X2(3)=  .9102E-06 
  X2(c5)= -.8929E-06  X2(s5)=  .2132E-06  X2(5)=  .9180E-06 
   
  Parameter h=  .17600, at this step variable 14 is independent 
  Amplitudes of harmonics of the 1-st variable: 
  X1(c1)=  .6621E-02  X1(s1)=  .6232E+00  X1(1)=  .6233E+00 
  X1(c3)= -.3453E-07  X1(s3)= -.4424E-07  X1(3)=  .5612E-07 
  X1(c5)= -.3422E-07  X1(s5)=  .2134E-07  X1(5)=  .4033E-07 
  Amplitudes of harmonics of the 2-st variable: 
  X2(c1)= -.1984E+01  X2(s1)=  .2107E-01  X2(1)=  .1984E+01 
  X2(c3)= -.3098E-05  X2(s3)=  .5171E-06  X2(3)=  .3141E-05 
  X2(c5)= -.3081E-05  X2(s5)=  .7359E-06  X2(5)=  .3168E-05 
       ---------------------------------------- 
  Refined value 1 root at h= .320 
  (the solution was obtained after the  3-rd iteration) 
 
  Amplitudes of harmonics of the 1-st variable: 
  X1(c1)=  .1244E-01  X1(s1)=  .1154E+01  X1(1)=  .1154E+01 
  X1(c3)= -.4680E-03  X1(s3)= -.1506E-01  X1(3)=  .1506E-01 
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  X1(c5)=  .4823E-03  X1(s5)=  .9395E-02  X1(5)=  .9407E-02 
  Amplitudes of harmonics of the 2-st variable: 
  X2(c1)= -.3671E+01  X2(s1)=  .3959E-01  X2(1)=  .3672E+01 
  X2(c3)=  .1597E-01  X2(s3)= -.4957E-03  X2(3)=  .1597E-01 
  X2(c5)= -.5986E-02  X2(s5)=  .3083E-03  X2(5)=  .5994E-02 
     ---------------------------------------- 
  Parameter h=  .33225, at this step variable 14 is independent 
  Amplitudes of harmonics of the 1-st variable: 
  X1(c1)=  .1277E-01  X1(s1)=  .1199E+01  X1(1)=  .1199E+01 
  X1(c3)= -.1131E-03  X1(s3)= -.1322E-01  X1(3)=  .1322E-01 
  X1(c5)=  .7192E-04  X1(s5)=  .3720E-02  X1(5)=  .3720E-02 
  Amplitudes of harmonics of the 2-st variable: 
  X2(c1)= -.3815E+01  X2(s1)=  .4064E-01  X2(1)=  .3816E+01 
  X2(c3)=  .1402E-01  X2(s3)= -.1189E-03  X2(3)=  .1402E-01 
  X2(c5)= -.2374E-02  X2(s5)=  .4723E-04  X2(5)=  .2374E-02 
   
  Parameter h=  .41790, at this step variable 2 is independent  
  Amplitudes of harmonics of the 1-st variable: 
  X1(c1)=  .2017E-01  X1(s1)=  .1774E+01  X1(1)=  .1775E+01 
  X1(c3)= -.2506E-02  X1(s3)= -.1671E+00  X1(3)=  .1671E+00 
  X1(c5)=  .8612E-03  X1(s5)=  .4959E-01  X1(5)=  .4959E-01 
  Amplitudes of harmonics of the 2-st variable: 
  X2(c1)= -.5647E+01  X2(s1)=  .6419E-01  X2(1)=  .5648E+01 
  X2(c3)=  .1773E+00  X2(s3)= -.2657E-02  X2(3)=  .1773E+00 
  X2(c5)= -.3157E-01  X2(s5)=  .5502E-03  X2(5)=  .3158E-01 
 
  Parameter h=  .45149, at this step variable 2 is independent 
  Amplitudes of harmonics of the 1-st variable: 
  X1(c1)=  .3560E-01  X1(s1)=  .2350E+01  X1(1)=  .2350E+01 
  X1(c3)= -.2027E-01  X1(s3)= -.4279E+00  X1(3)=  .4284E+00 
  X1(c5)=  .1296E-01  X1(s5)=  .1409E+00  X1(5)=  .1415E+00 
  Amplitudes of harmonics of the 2-st variable: 
  X2(c1)= -.7479E+01  X2(s1)=  .1133E+00  X2(1)=  .7480E+01 
  X2(c3)=  .4539E+00  X2(s3)= -.2150E-01  X2(3)=  .4544E+00 
  X2(c5)= -.8968E-01  X2(s5)=  .8255E-02  X2(5)=  .9006E-01 
   
  Parameter h=  .46160, at this step variable 2 is independent 
  Amplitudes of harmonics of the 1-st variable: 
  X1(c1)=  .2130E+00  X1(s1)=  .5228E+01  X1(1)=  .5232E+01 
  X1(c3)= -.2734E+00  X1(s3)= -.1986E+01  X1(3)=  .2005E+01 
  X1(c5)=  .1482E+00  X1(s5)=  .6047E+00  X1(5)=  .6225E+00 
  Amplitudes of harmonics of the 2-st variable: 
  X2(c1)= -.1664E+02  X2(s1)=  .6778E+00  X2(1)=  .1665E+02 
  X2(c3)=  .2107E+01  X2(s3)= -.2901E+00  X2(3)=  .2127E+01 
  X2(c5)= -.3849E+00  X2(s5)=  .9433E-01  X2(5)=  .3963E+00 
   
  Parameter h=  .45161, at this step variable 2 is independent 
  Amplitudes of harmonics of the 1-st variable: 
  X1(c1)=  .6507E+00  X1(s1)=  .8826E+01  X1(1)=  .8849E+01 
  X1(c3)= -.8147E+00  X1(s3)= -.3381E+01  X1(3)=  .3477E+01 
  X1(c5)=  .2731E+00  X1(s5)=  .6126E+00  X1(5)=  .6708E+00 
  Amplitudes of harmonics of the 2-st variable: 
  X2(c1)= -.2809E+02  X2(s1)=  .2071E+01  X2(1)=  .2817E+02 
  X2(c3)=  .3586E+01  X2(s3)= -.8643E+00  X2(3)=  .3689E+01 
  X2(c5)= -.3900E+00  X2(s5)=  .1739E+00  X2(5)=  .4270E+00 
   
  Parameter h=  .34430, at this step variable 14 is independent 
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  Amplitudes of harmonics of the 1-st variable: 
  X1(c1)=  .6777E+01  X1(s1)=  .2530E+02  X1(1)=  .2619E+02 
  X1(c3)= -.4689E+01  X1(s3)= -.4414E+01  X1(3)=  .6440E+01 
  X1(c5)= -.1396E+01  X1(s5)= -.5603E+00  X1(5)=  .1504E+01 
  Amplitudes of harmonics of the 2-st variable 
  X2(c1)= -.8052E+02  X2(s1)=  .2157E+02  X2(1)=  .8336E+02 
  X2(c3)=  .4683E+01  X2(s3)= -.4975E+01  X2(3)=  .6832E+01 
  X2(c5)=  .3566E+00  X2(s5)= -.8885E+00  X2(5)=  .9574E+00 
       ---------------------------------------- 
  Refined value 2 root at h= .320 
  (the solution was obtained after the  3-rd iteration) 
 
  Amplitudes of harmonics of the 1-st variable: 
  X1(c1)=  .8393E+01  X1(s1)=  .2787E+02  X1(1)=  .2910E+02 
  X1(c3)= -.5414E+01  X1(s3)= -.4329E+01  X1(3)=  .6932E+01 
  X1(c5)= -.1726E+01  X1(s5)= -.2838E+00  X1(5)=  .1749E+01 
  Amplitudes of harmonics of the 2-st variable: 
  X2(c1)= -.8870E+02  X2(s1)=  .2671E+02  X2(1)=  .9263E+02 
  X2(c3)=  .4592E+01  X2(s3)= -.5744E+01  X2(3)=  .7354E+01 
  X2(c5)=  .1805E+00  X2(s )= -.1099E+01  X2(5)=  .1114E+01 
  ---------------------------------------- 
  Parameter h=  .31757, at this step variable 14 is independent 
  Amplitudes of harmonics of the 1-st variable: 
  X1(c1)=  .9745E+01  X1(s1)=  .2882E+02  X1(1)=  .3043E+02 
  X1(c3)= -.5887E+01  X1(s3)= -.3668E+01  X1(3)=  .6936E+01 
  X1(c5)= -.2023E+01  X1(s5)= -.1108E+00  X1(5)=  .2026E+01 
  Amplitudes of harmonics of the 2-st variable: 
  X2(c1)= -.9174E+02  X2(s1)=  .3102E+02  X2(1)=  .9684E+02 
  X2(c3)=  .3891E+01  X2(s3)= -.6246E+01  X2(3)=  .7359E+01 
  X2(c5)=  .7037E-01  X2(s5)= -.1287E+01  X2(5)=  .1289E+01 
   
  Parameter h=  .25073, at this step variable 14 is independent 
  Amplitudes of harmonics of the 1-st variable: 
  X1(c1)=  .2195E+02  X1(s1)=  .3566E+02  X1(1)=  .4187E+02 
  X1(c3)= -.8121E+01  X1(s3)=  .1117E+01  X1(3)=  .8198E+01 
  X1(c5)= -.1599E+01  X1(s5)=  .2856E+01  X1(5)=  .3273E+01 
  Amplitudes of harmonics of the 2-st variable: 
  X2(c1)= -.1135E+03  X2(s1)=  .6986E+02  X2(1)=  .1333E+03 
  X2(c3)= -.1185E+01  X2(s3)= -.8616E+01  X2(3)=  .8697E+01 
  X2(c5)= -.1818E+01  X2(s5)= -.1018E+01  X2(5)=  .2084E+01 
   
  Parameter h=  .20046, at this step variable 2 is independent 
  Amplitudes of harmonics of the 1-st variable: 
  X1(c1)=  .4593E+02  X1(s1)=  .3062E+02  X1(1)=  .5520E+02 
  X1(c3)= -.1614E+01  X1(s3)=  .9243E+01  X1(3)=  .9383E+01 
  X1(c5)=  .3957E+01  X1(s5)= -.7017E+00  X1(5)=  .4018E+01 
  Amplitudes of harmonics of the 2-st variable: 
  X2(c1)= -.9745E+02  X2(s1)=  .1462E+03  X2(1)=  .1757E+03 
  X2(c3)= -.9806E+01  X2(s3)= -.1713E+01  X2(3)=  .9954E+01 
  X2(c5)=  .4465E+00  X2(s5)=  .2519E+01  X2(5)=  .2558E+01 
 
  Parameter h=  .19796, at this step variable 2 is independent 
  Amplitudes of harmonics of the 1-st variable: 
  X1(c1)=  .5010E+02  X1(s1)=  .2761E+02  X1(1)=  .5720E+02 
  X1(c3)=  .6282E+00  X1(s3)=  .9425E+01  X1(3)=  .9446E+01 
  X1(c5)=  .3361E+01  X1(s5)= -.2444E+01  X1(5)=  .4156E+01 
  Amplitudes of harmonics of the 2-st variable: 
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  X2(c1)= -.8787E+02  X2(s1)=  .1594E+03  X2(1)=  .1821E+03 
  X2(c3)= -.9999E+01  X2(s3)=  .6664E+00  X2(3)=  .1002E+02 
  X2(c5)=  .1555E+01  X2(s5)=  .2139E+01  X2(5)=  .2645E+01 
   
  Parameter h=  .19628, at this step variable 2 is independent 
  Amplitudes of harmonics of the 1-st variable: 
  X1(c1)=  .5770E+02  X1(s1)=  .2008E+02  X1(1)=  .6109E+02 
  X1(c3)=  .4950E+01  X1(s3)=  .8005E+01  X1(3)=  .9412E+01 
  X1(c5)=  .2322E+00  X1(s5)= -.4465E+01  X1(5)=  .4471E+01 
  Amplitudes of harmonics of the 2-st variable: 
  X2(c1)= -.6392E+02  X2(s1)=  .1836E+03  X2(1)=  .1944E+03 
  X2(c3)= -.8493E+01  X2(s3)=  .5251E+01  X2(3)=  .9985E+01 
  X2(c5)=  .2842E+01  X2(s5)=  .1478E+00  X2(5)=  .2846E+01 
   
  Parameter h=  .24834, at this step variable 2 is independent 
  Amplitudes of harmonics of the 1-st variable: 
  X1(c1)=  .7383E+02  X1(s1)= -.1923E+02  X1(1)=  .7629E+02 
  X1(c3)=  .6192E+01  X1(s3)= -.5864E+01  X1(3)=  .8528E+01 
  X1(c5)= -.1529E+01  X1(s5)=  .4633E+01  X1(5)=  .4879E+01 
  Amplitudes of harmonics of the 2-st variable: 
  X2(c1)=  .6121E+02  X2(s1)=  .2350E+03  X2(1)=  .2428E+03 
  X2(c3)=  .6222E+01  X2(s3)=  .6568E+01  X2(3)=  .9047E+01 
  X2(c5)= -.2949E+01  X2(s5)= -.9731E+00  X2(5)=  .3106E+01 
   
  Parameter h=  .30532, at this step variable 14 is independent 
  Amplitudes of harmonics of the 1-st variable: 
  X1(c1)=  .7583E+02  X1(s1)= -.3982E+02  X1(1)=  .8565E+02 
  X1(c3)=  .5660E+00  X1(s3)= -.8466E+01  X1(3)=  .8485E+01 
  X1(c5)=  .3588E+01  X1(s5)=  .3239E+01  X1(5)=  .4833E+01 
  Amplitudes of harmonics of the 2-st variable: 
  X2(c1)=  .1267E+03  X2(s1)=  .2413E+03  X2(1)=  .2726E+03 
  X2(c3)=  .8982E+01  X2(s3)=  .6002E+00  X2(3)=  .9002E+01 
  X2(c5)= -.2061E+01  X2(s5)=  .2284E+01  X2(5)=  .3076E+01 
       ---------------------------------------- 
   Refined value 3 root at h= .320 
  (the solution was obtained after the  3-rd iteration) 
 
  Amplitudes of harmonics of the 1-st variable: 
  X1(c1)=  .7516E+02  X1(s1)= -.4765E+02  X1(1)=  .8899E+02 
  X1(c3)= -.1461E+01  X1(s3)= -.9241E+01  X1(3)=  .9355E+01 
  X1(c5)=  .4776E+01  X1(s5)=  .1572E+01  X1(5)=  .5028E+01 
  Amplitudes of harmonics of the 2-st variable: 
  X2(c1)=  .1517E+03  X2(s1)=  .2392E+03  X2(1)=  .2832E+03 
  X2(c3)=  .9803E+01  X2(s3)= -.1550E+01  X2(3)=  .9925E+01 
  X2(c5)= -.1001E+01  X2(s5)=  .3040E+01  X2(5)=  .3201E+01 
  ---------------------------------------- 
  Parameter h=  .35726, at this step variable 14 is independent 
  Amplitudes of harmonics of the 1-st variable: 
  X1(c1)=  .7658E+02  X1(s1)= -.5233E+02  X1(1)=  .9275E+02 
  X1(c3)= -.2501E+01  X1(s3)= -.8261E+01  X1(3)=  .8631E+01 
  X1(c5)=  .4818E+01  X1(s5)=  .8092E+00  X1(5)=  .4885E+01 
  Amplitudes of harmonics of the 2-st variable: 
  X2(c1)=  .1665E+03  X2(s1)=  .2437E+03  X2(1)=  .2952E+03 
  X2(c3)=  .8764E+01  X2(s3)= -.2653E+01  X2(3)=  .9157E+01 
  X2(c5)= -.5149E+00  X2(s5)=  .3067E+01  X2(5)=  .3110E+01 
 
  Parameter h=  .43297, at this step variable 2 is independent 
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  Amplitudes of harmonics of the 1-st variable: 
  X1(c1)=  .7764E+02  X1(s1)= -.6656E+02  X1(1)=  .1023E+03 
  X1(c3)= -.5058E+01  X1(s3)= -.7139E+01  X1(3)=  .8749E+01 
  X1(c5)=  .4549E+01  X1(s5)= -.1651E+01  X1(5)=  .4840E+01 
  Amplitudes of harmonics of the 2-st variable: 
  X2(c1)=  .2118E+03  X2(s1)=  .2471E+03  X2(1)=  .3255E+03 
  X2(c3)=  .7574E+01  X2(s3)= -.5366E+01  X2(3)=  .9282E+01 
  X2(c5)=  .1051E+01  X2(s5)=  .2896E+01  X2(5)=  .3081E+01 
   
  Parameter h=  .50740, at this step variable 14 is independent 
  Amplitudes of harmonics of the 1-st variable: 
  X1(c1)=  .7908E+02  X1(s1)= -.7798E+02  X1(1)=  .1111E+03 
  X1(c3)= -.6292E+01  X1(s3)= -.6074E+01  X1(3)=  .8746E+01 
  X1(c5)=  .3726E+01  X1(s5)= -.2837E+01  X1(5)=  .4683E+01 
  Amplitudes of harmonics of the 2-st variable: 
  X2(c1)=  .2482E+03  X2(s1)=  .2517E+03  X2(1)=  .3535E+03 
  X2(c3)=  .6444E+01  X2(s3)= -.6676E+01  X2(3)=  .9279E+01 
  X2(c5)=  .1806E+01  X2(s5)=  .2372E+01  X2(5)=  .2981E+01 
 
 

             The HARMOSC procedure provided writing to the output file of the entire  h -characteristic 
(because KER(5)=1 was set), because it exactly reflects the characteristic of the ferroresonant 
circuit. This characteristic is shown in fig. 4.3 with a solid line. 
            Here it should be taken into account that the figure shows the dependence on the 
amplitude of the applied voltage, not of the effective value of the current, but of the amplitude of 
its first harmonic. This is due to the fact that the standard OUTP procedure from Block 5 of the 

DHM-S was used, which does not provide for the 
calculation of the actual values of variables. If such 
additional calculations and printouts are necessary, 
the user must develop the OUTP procedure 
independently. 
           In fig. 4.3 also shows the dependence on the 
amplitude of the applied voltage of the value 
proportional to the value of the free term of the 
characteristic equation of the form (1.138). This 
curve (it is shown dotted) illustrates that all stable 
modes (nonlinear oscillations) that lie on the first 
part of the characteristic (variation of the parameter  
h    from zero to 0.4616) are aperiodically stable, 
because the free term of the characteristic equation 

has a plus sign. Steady processes belonging to the second part of the characteristic (the 
parameter decreases from 0.4616 to 0.196) are aperiodically unstable, because when moving 
to this part, the free term of the characteristic equation changes its sign from plus to minus and 
keeps this sign throughout this part. The steady processes belonging to the third part of the 
characteristic are aperiodically stable, because when moving to this part, the free term again 
changes its sign from minus to plus. 
           Calculation of the value of the free term of the characteristic equation can be provided in 
the OUTP procedure, for this the user needs to modify this procedure. 

        Fig. 4.3.  Characteristic of the 
               ferroresonance circuit 

V 
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           In fig. 4.3  is shown the dependence of the parameter  h   on the amplitude  of the first 
harmonic of the current, it  has two special points 4616.0≈h   and  196.0≈h . Their 
passage in the process of calculating the  −h characteristic was carried out by the HARMOSC 
procedure using the inversion algorithm described in section 1.5.7. This can be tracked by 
analyzing the printout of the output file: there you can see when the independent variable when 
moving along the characteristic is a parameter  h  (here it is the 14th component of the vector 
of variables), and when the independent variable is the sine amplitude of the first harmonic of 
the current (here it is the 2th component of the vector variables). 
           Three periodic solutions of the system of equations (4.17) at 32.0=h  using the 
HARMOSC procedure were refined by Newton's iterative method (this value of h  corresponds 
𝑈𝑈𝑚𝑚 = 32.0 𝑉𝑉). In the refined first periodic solution, the content of higher harmonics in the 
current curve is insignificant: the third harmonic is 1.3%; the fifth harmonic is 0.8% (in this stable 
mode, the choke saturation is negligible). In the refined second periodic solution (aperiodically 
unstable), the content of higher harmonics is as follows: third – 23.8% and fifth – 5.8%. In the 
refined third periodic solution, the content of higher harmonics is as follows: the third – 10.5% 
and the fifth – 5.6%.     
 

4.1.4. Example   В.4   
 

       This example considers the calculation of 
a periodic process in an electrical circuit 
containing a controlled valve (see Fig. 4.4). The 
problem uses the instantaneous model described 
in section 3.2.1.1 on the period of the controlled 
valve, the volt-ampere characteristic of which 
belongs to the second group - is unique with the 
condition. 
         The considered scheme of fig. 4.4 is non-
linear, since its third branch contains two non-
linear elements: a controlled valve and a 
saturation choke. 
          This scheme is described by the following 
system of algebraic-differential equations: 
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here     32 ,, iiig  - circuit branch currents;  3вu - valve voltage (is a non-linear function of the 

current 3i );     gL , 2L   - inductances of the first two branches;  32 ,, φφφg  - flux coupling of 
the inductive elements of the branches, at the same time 
                                       222; iLiL ggg == φφ   ;                                          (4.22) 
                                                   ][ 333 iφφ =                                                        (4.23) 

- magnetization curve of the magnetic choke of the third branch; 
 
                                                   tEe m ωsin=                                                     (4.24) 

- electromotive force in the first branch. 

      Equation (4.21) is reduced to the form (1.66) if we denote: 
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At the same time, the matrix of the form (1.69) is as follows: 
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The matrices of differential parameters necessary for building an instantaneous 

process model (on a period) have the form 
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here      −== ][ 33333 iLiddL дд φ   the differential inductance of the choke of the third branch, 
it is a nonlinear function of the current 3i ;  ][ 333 iridudr ввв ==  –  the differential active 
resistance of the valve, it is a nonlinear function of the current   3i . 
           The text of the main program Program Ven  of the block of user software components: 
 

      Program Ven 
! The program of calculation of periodic process  in the scheme with a valve (Fig. 4.4) 
!------------------------- 
  implicit none 
  real,dimension(53)::X 
  real,dimension(51)::E 
  integer,dimension(10)::KER 
  real,dimension(3,3)::B 
  real,dimension(20)::PS3 
  real::ALG,AL2,RG,R2,R3,ST31,DS3,Rmax,Rmin,AZ3,DAZ3 
  real::Em,OM,EPS1,EPS2,H1,HM 
  integer::i,NT3,K,NG,NK 
  common/MPM/B,ALG,AL2,RG,R2,R3, NT3,ST31,DS3,PS3,Rmax,Rmin,AZ3,DAZ3  
!----   common/MPM/ passes data to the Model procedure 
             open(1,File='DaniV.dat',status='old') 
  read(1,1)Em,OM,EPS1,EPS2,H1,HM 
  read(1,1)B 
!---   Em,OM - the amplitude of the applied voltage and its frequency 
!---    B  - the matrix of coefficients of the system of differential equations 
  read(1,1)ALG,AL2,RG,R2,R3 
!---   ALG,AL2,RG, R2, R3 - inductances and active resistors of the scheme 
      Read(1,2)NT3 
  read(1,1)ST31,DS3 
  read(1,1) (PS3(i),i=1,NT3)   !--   magnetiz. curve of the choke 
  read(1,1)Rmax,Rmin,AZ3,DAZ3  !-- valve parameters 
              read(1,2)KER    
  read(1,2)K      
    1 format(4E10.4) 
    2 format(10I3) 
  close(1) 
        open(1,FILE='RezV.DAT') 
        write(1,10) 
   10 format(/5X, 'Input data of the task:'/) 
             write(1,4)Em,OM,EPS1,EPS2,H1,HM 
  write(1,4)B 
  write(1,4)ALG,AL2,RG,R2,R3 
  write(1,3)NT3 
  write(1,4)ST31,DS3 
  write(1,4)(PS3(i),i=1,NT3) 
  write(1,4)Rmax,Rmin,AZ3,DAZ3 
              write(1,3)KER 
  write(1,3)K 
    3 format(2X,10I5) 
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    4 format(2X,4E12.4) 
 write(1,20) 
   20 format(/5X,'T h e  r e s u l t s :'/) 
         call SizesV(KER(1),K,KER(8),NG,NK) 
  write(1,3)NG,NK 
!---  a composite vector of amplitudes of forcing forces  
!---  (a sinusoid with amplitude Em) and the initial value of the vector X are formed 
        E=0.;  E(NG+3)=Em 
        X=0.;  X(NK+1)=OM 
       call HARMOSC(K,X,E,NK,HM,H1,EPS1,EPS2,KER) 
       close(1) 
       stop 
      end Program Ven 

 
           The main program of this package performs: 
            - description of variables, including: 
                  a) description and declaration of the size of arrays X(53), E(51). Here X  is a column 
matrix formed from the composite vector of current amplitudes of three branches, circular 
frequency and parameter  h ; E is the composite vector of forcing force amplitudes. The set sizes 
of these two arrays allow you to set the maximum order of the considered harmonics no higher 
than 6 (the problem takes into account constant components and harmonics of all even and odd 
orders); 
                 b) description of the KER(10)  array - control variables of the integer type; 
                 c) description of the array B(3,3) - for the matrix (4.26) of the coefficients of the 
algebraic-differential system of equations (4.21), reduced to the form (1.66); 
                 d) description of the PSN(20) array - for the table, which specifies the nonlinear part of 
the choke magnetization curve (obviously, the number of nodes in the table should not be more 
than 20); 
                 e) description of scalar variables of integer and real types; 
           – a description of the shared memory area called MPM, with its help, data is transferred 
to the Model procedure), 
          – entering input data from the DaniV.dat file; 
          – output of this data to the RezV.dat source file; 
          – appeal to the SizesV procedure (included in Block 5 of the DHM-S); 
          – assigning a value to the composite vector of amplitudes E; 
          – appeal to the HARMOSC procedure (included in Block 3 of the DHM-S). 
         The text of the Model procedure of the instantaneous process model (on the period) in the 
scheme of fig. 4.4: 

    
      Subroutine Model(AL,M,K,MK,XC,YC,ZC,YXC,ZXC,BM) 
!-- The subroutine implements the instantaneous model of process in the circuit with valve 
  Implicit none 
  integer,intent(in)::M,K,MK 
  real,dimension(MK)::XC,YC,ZC 
  real,dimension(MK,K)::YXC,ZXC 
  real,dimension(K)::X,Y,Z 
  real,dimension(K,K)::YX,ZX,BM 
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  real,dimension(M)::XV,UV,RV,UV1,RV1 
  real,dimension(3,3)::B 
  real,dimension(20)::PS3 
  real::ALG,AL2,RG,R2,R3,ST31,DS3,YX3,Rmax,Rmin,AZ3,DAZ3,AL 
  integer::NT3,i 
  common/MPM/B,ALG,AL2,RG,R2,R3,NT3,ST31,DS3,PS3,Rmax,Rmin,AZ3,DAZ3       
!--   through Common/MPM/ the data from the main program is transferred 
    BM=B;  AL=0. 
  do i=1,M 
     call DRAWOUTV(K,XC,MK,X,i) 
     Y(1)=ALG*X(1);  Y(2)=AL2*X(2) 
     call INTLIN(X(3),Y(3),YX3,ST31,DS3,PS3,NT3)  
                 Z(1)=X(1)-X(2)-X(3) 
     Z(2)=RG*X(1)+R2*X(2) 
     Z(3)=R2*X(2)-R3*X(3) 
     ZX(1,1)=1.;  ZX(1,2)=-1.;   ZX(1,3)=-1. 
     ZX(2,1)=RG;     ZX(2,2)=R2;    ZX(2,3)=0. 
     ZX(3,1)=0.;     ZX(3,2)=R2;    ZX(3,3)=-R3 
     YX(1,1)=ALG;    YX(1,2)=0.;    YX(1,3)=0. 
                 YX(2,1)=0.;     YX(2,2)=AL2;   YX(2,3)=0. 
     YX(3,1)=0.;     YX(3,2)=0.;    YX(3,3)=YX3 
                 call DRAWUPV(K,Y,YC,MK,i) 
     call DRAWUPV(K,Z,ZC,MK,i) 
     call DRAWUPM(K,YX,YXC,MK,i) 
     call DRAWUPM(K,ZX,ZXC,MK,i) 
  end do 
  call DRAWOUTXV(K,XC,MK,M,XV,3) 
  call Venper(XV,M,AZ3,DAZ3,Rmax,Rmin,UV,RV) 
  UV1=-UV;  RV1=-RV 
  call ADDV(K,UV1,M,ZC,MK,3) 
  call ADDM(K,RV1,M,ZXC,MK,3) 
    return 
  end subroutine Model 
 
       

           The Model procedure based on the value of the vector  x   of instantaneous values of the 
independent variables - currents of the circuit branches - calculates in a cycle at all nodes of the 
period the values of vectors zy  ,  and matrices xdyd      (YX) and   xdzd    (ZX) according 
to formulas (4.25), (4.27) and (4.28). However, in this case, the value  “ 3вu− ”  is not added to 
the element Z(3) and the value  “ 3r−  ”  is not added to the element ZX(3,3), as required by 
formula (4.25), because these data belong to the controlled gate - nonlinearities of the second 
group. These additional data are determined already after the end of the cycle by calling the 
Venper procedure from Block 5 of the DHM-S, which implements the instant-on-period model of 
the controlled valve. To do this, the DRAWOUTXV procedure is first called for execution, which 
extracts a simple nodal vector XV (the value of the currents of the third branch in the nodes of 
the period) from the complex nodal vector of currents XC. The Venper procedure is then run, 
which calculates the values of the simple node vectors UV (valve voltage at period nodes) and 
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RV (valve resistance at period nodes). And, at the end, it enters this data using the ADDV and 
ADDM procedures (see sections 3.2.2.5 and 3.2.2.6) into the ZC and ZXC arrays. 

           Input data (DaniV.dat file): 
+.2000E 01+.3142E 03+.1000E-01+.3000E-02 
+.1000E 01+.1000E 01 
+.0000E 00+.1000E 01+.0000E 00+.0000E 00 
+.1000E 01+.1000E 01+.0000E 00+.0000E 00 
-.1000E 01 
+.3000E-03+.9000E-03+.1000E 00+.3000E 00 
+.4000E 00 
011 
+.1000E 01+.2000E 00 
+.1500E-02+.1730E-02+.1890E-02+.2025E-02 
+.2130E-02+.2220E-02+.2295E-02+.2355E-02 
+.2400E-02+.2430E-02+.2445E-02 
+.1000E 04+.1000E-03+.5000E 00+.3000E 00 
000000001000000000000008000000 
003 

           In this file: 
          The first line is data for assignment to variables  1,, εωmE  (accuracy of  −h
characteristic calculation) and 2ε  (accuracy for iterations when refining the connection). 
           The second line is for assigning values to the variables  h∆  (initial value of the step), 1h
-  (value of the parameter h   at which the solution should be refined), maxh ( final value of the 
parameter h ). 
          The third, fourth and fifth lines are the matrix B  according to the formula (4.26), read 
column by column. 
           The sixth and seventh lines are for variables 322 ,,,, rrrLL gg . 
           The next five lines are the magnetization curve of the choke: the number of points, the 
coordinate of the start of the non-linear part, the step of the table and the table. 
           The thirteenth line is for variables  зrr α,, minmax  (ignition angle), зα∆ (ignition pulse 
width, its value should not be less than the angular distance between neighboring nodes in the 
period). 
           The last two lines are numbers of the integer type: for the KER array and for the variable   
k  - the order of the system of equations (4.21). 
           Calculation results (RezV.dat file): 
     Input data of the task: 
     .2000E+01   .3142E+03   .1000E-01   .3000E-02 
     .1000E+01   .1000E+01 
     .0000E+00   .1000E+01   .0000E+00   .0000E+00 
     .1000E+01   .1000E+01   .0000E+00   .0000E+00 
    -.1000E+01 
     .3000E-03   .9000E-03   .1000E+00   .3000E+00 
     .4000E+00 
     11 
     .1000E+01   .2000E+00 
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     .1500E-02   .1730E-02   .1890E-02   .2025E-02 
     .2130E-02   .2220E-02   .2295E-02   .2355E-02 
     .2400E-02   .2430E-02   .2445E-02 
     .1000E+04   .1000E-03   .5000E+00   .3000E+00 
      0    0    1    0    0    0    0    8    0    0 
      3 
     T h e  r e s u l t s : 
 
     17   51 
  Number of the highest harmonic = 8 
     ---------------------------------------- 
  Refined value 1 root at h= 1.000 
  (the solution was obtained after the 12-rd iteration) 
 
  Amplitudes of harmonics of the 1-st variable: 
  Constant component =   .5783E+00 
  X1(c1)= -.3057E+01    X1(s1)=  .3380E+01    X1(1)=  .4558E+01 
  X1(c2)= -.1332E+00    X1(s2)= -.4176E+00    X1(2)=  .4384E+00 
  X1(c3)=  .9837E-01    X1(s3)= -.1036E-01    X1(3)=  .9891E-01 
  X1(c4)=  .2848E-01    X1(s4)=  .4142E-01    X1(4)=  .5027E-01 
  X1(c5)= -.2363E-01    X1(s5)= -.2090E-01    X1(5)=  .3155E-01 
  X1(c6)=  .1114E-01    X1(s6)=  .1083E-01    X1(6)=  .1554E-01 
  X1(c7)=  .4702E-02    X1(s7)= -.9364E-02    X1(7)=  .1048E-01 
  X1(c8)= -.2168E-03    X1(s8)=  .9578E-02    X1(8)=  .9581E-02 
  
 The value of the variable in nodes of period, M =102   
  .2493E+01-.2326E+01-.2151E+01 -.1968E+01 -.1778E+01 -.1579E+01 
 -.1371E+01-.1153E+01-.9237E+00 -.6828E+00 -.4305E+00 -.1675E+00 
  .1048E+00 .3850E+00 .6713E+00  .9622E+00  .1257E+01  .1554E+01 
  .1854E+01 .2156E+01 .2460E+01  .2766E+01  .3072E+01  .3377E+01 
  .3676E+01 .3967E+01 .4245E+01  .4506E+01  .4745E+01  .4960E+01 
  .5147E+01 .5306E+01 .5435E+01  .5535E+01  .5605E+01  .5647E+01 
  .5661E+01 .5648E+01 .5608E+01  .5542E+01  .5451E+01  .5336E+01 
  .5201E+01 .5047E+01 .4878E+01  .4697E+01  .4507E+01  .4310E+01 
  .4108E+01 .3900E+01 .3685E+01  .3462E+01  .3228E+01  .2981E+01 
  .2721E+01 .2446E+01 .2160E+01  .1864E+01  .1562E+01  .1260E+01 
  .9606E+00 .6692E+00 .3886E+00  .1205E+00 -.1346E+00 -.3773E+00 
 -.6093E+00-.8324E+00-.1048E+01 -.1259E+01 -.1465E+01 -.1666E+01 
 -.1863E+01-.2053E+01-.2235E+01 -.2409E+01 -.2573E+01 -.2726E+01 
 -.2868E+01-.3000E+01-.3120E+01 -.3229E+01 -.3326E+01 -.3411E+01 
 -.3484E+01-.3543E+01-.3588E+01 -.3619E+01 -.3636E+01 -.3639E+01 
 -.3628E+01-.3603E+01-.3566E+01 -.3515E+01 -.3451E+01 -.3375E+01 
 -.3286E+01-.3183E+01-.3068E+01 -.2941E+01 -.2802E+01 -.2652E+01 
 
  Amplitudes of harmonics of the 2-st variable: 
  Constant component =  -.1928E+00 
  X2(c1)= -.2308E+01  X2(s1)=  .2403E+01   X2(1)=  .3332E+01 
  X2(c2)=  .4440E-01  X2(s2)=  .1392E+00   X2(2)=  .1461E+00 
  X2(c3)= -.3280E-01  X2(s3)=  .3455E-02   X2(3)=  .3298E-01 
  X2(c4)= -.9498E-02  X2(s4)= -.1381E-01   X2(4)=  .1676E-01 
  X2(c5)=  .7872E-02  X2(s5)=  .6966E-02   X2(5)=  .1051E-01 
  X2(c6)= -.3719E-02  X2(s6)= -.3610E-02   X2(6)=  .5183E-02 
  X2(c7)= -.1573E-02  X2(s7)=  .3123E-02   X2(7)=  .3496E-02 
  X2(c8)=  .6675E-04  X2(s8)= -.3191E-02   X2(8)=  .3192E-02 
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  The value of the variable in nodes of period, M =102   
 -.2497E+01-.2329E+01-.2152E+01 -.1966E+01 -.1773E+01 -.1574E+01 
 -.1371E+01-.1163E+01-.9536E+00 -.7431E+00 -.5328E+00 -.3234E+00 
 -.1158E+00 .8959E-01 .2921E+00  .4911E+00  .6859E+00  .8755E+00 
  .1059E+01 .1235E+01 .1404E+01  .1563E+01  .1713E+01  .1852E+01 
  .1983E+01 .2104E+01 .2216E+01  .2320E+01  .2417E+01  .2507E+01 
  .2590E+01 .2667E+01 .2736E+01  .2798E+01  .2853E+01  .2898E+01 
  .2935E+01 .2963E+01 .2981E+01  .2990E+01  .2989E+01  .2977E+01 
  .2954E+01 .2919E+01 .2873E+01  .2812E+01  .2739E+01  .2651E+01 
  .2550E+01 .2436E+01 .2310E+01  .2173E+01  .2028E+01  .1875E+01 
  .1715E+01 .1551E+01 .1381E+01  .1206E+01  .1027E+01  .8416E+00 
  .6505E+00 .4532E+00 .2498E+00  .4067E-01 -.1731E+00 -.3901E+00 
 -.6087E+00-.8273E+00-.1044E+01 -.1257E+01 -.1466E+01 -.1668E+01 
 -.1864E+01-.2052E+01-.2233E+01 -.2405E+01 -.2568E+01 -.2722E+01 
 -.2866E+01-.2999E+01-.3120E+01 -.3230E+01 -.3327E+01 -.3411E+01 
 -.3482E+01-.3540E+01-.3585E+01 -.3616E+01 -.3634E+01 -.3638E+01 
 -.3628E+01-.3604E+01-.3567E+01 -.3516E+01 -.3451E+01 -.3373E+01 
 -.3283E+01-.3180E+01-.3065E+01 -.2939E+01 -.2802E+01 -.2655E+01 
 
  Amplitudes of harmonics of the 3-st variable: 
  Constant component =   .7711E+00 
  X3(c1)= -.7486E+00   X3(s1)=  .9771E+00   X3(1)=  .1231E+01 
  X3(c2)= -.1776E+00   X3(s2)= -.5568E+00   X3(2)=  .5845E+00 
  X3(c3)=  .1312E+00   X3(s3)= -.1382E-01   X3(3)=  .1319E+00 
  X3(c4)=  .3798E-01   X3(s4)=  .5523E-01   X3(4)=  .6703E-01 
  X3(c5)= -.3150E-01   X3(s5)= -.2786E-01   X3(5)=  .4206E-01 
  X3(c6)=  .1486E-01   X3(s6)=  .1444E-01   X3(6)=  .2073E-01 
  X3(c7)=  .6274E-02   X3(s7)= -.1249E-01   X3(7)=  .1397E-01 
  X3(c8)= -.2835E-03   X3(s8)=  .1277E-01   X3(8)=  .1277E-01 
 
  The value of the variable in nodes of period, M =102   
  .3340E-02  .2912E-02 .1035E-02-.1773E-02 -.4301E-02 -.4705E-02 
 -.7083E-03  .1009E-01  .2987E-01 .6029E-01 .1022E+00  .1559E+00 
  .2206E+00 .2954E+00  .3792E+00 .4711E+00  .5708E+00  .6783E+00 
  .7945E+00 .9202E+00  .1056E+01 .1203E+01  .1360E+01  .1524E+01 
  .1693E+01 .1863E+01  .2029E+01 .2186E+01  .2328E+01  .2453E+01 
  .2557E+01 .2639E+01  .2699E+01 .2736E+01  .2752E+01  .2749E+01 
  .2726E+01 .2685E+01  .2626E+01 .2552E+01  .2462E+01  .2359E+01 
  .2247E+01 .2127E+01  .2005E+01 .1884E+01  .1768E+01  .1659E+01 
  .1558E+01 .1464E+01  .1375E+01 .1289E+01  .1200E+01  .1107E+01 
  .1005E+01 .8959E+00  .7790E+00 .6574E+00  .5354E+00  .4179E+00 
  .3100E+00 .2160E+00  .1388E+00 .7980E-01  .3846E-01  .1274E-01 
 -.5431E-03-.5090E-02 -.4538E-02-.1953E-02  .5018E-03  .1672E-02 
  .1313E-02-.1600E-03 -.2006E-02-.3483E-02 -.4090E-02 -.3696E-02 
 -.2524E-02-.1040E-02  .2268E-03 .8600E-03  .6805E-03 -.2104E-03 
 -.1479E-02-.2676E-02 -.3385E-02-.3357E-02 -.2585E-02 -.1307E-02 
  .6975E-04 .1102E-02  .1452E-02 .1001E-02 -.1008E-03 -.1474E-02 
 -.2620E-02-.3080E-02 -.2595E-02-.1219E-02  .6630E-03  .2416E-02 

 
             Comment on the  RezV.dat  file with the rezults: 
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             After completing the calcu-
lation of the  −h characteristics, 
the obtained value of the 
composite vector of current 
amplitudes of the branches of the 
circuit was refined according to 
Newton's method (the specified 
accuracy was obtained after the 
12th iteration). For each variable 
(circuit branch currents), the 
constant components and 

amplitudes of harmonics, cosine and sine components of these amplitudes, as well as the values 
of these variables in period nodes are printed. 
           The dependence of the third variable on one period of the angular coordinate - the current 
of the third branch with a controlled valve - is shown in Fig. 4.5. The value of the ignition angle 
was set to   =зα 0.5.  Due to the presence of a fairly significant inductance in the branch with 

the valve, the valve is in a state of conduction from 0.5 to almost 4 radians (the applied voltage 
is a sinusoid). 

 
4.1.5.  Example  В.5 

           In this example, nonlinear oscillations are 
simulated in a system that contains an ambiguous 
nonlinearity of the hysteresis type (nonlinearity of the 
third group), which is described in section 3.2.1.2. 
Such a system is the electric circuit shown in fig. 4.6. 
In the third branch of the circuit there is a choke (non-
linear inductance), the Weber-ampere characteristic of 
which has a hysteresis form. In addition, in the second 
branch of the circuit there is a nonlinear active 
resistance with a current-current characteristic that is 
given analytically and is unambiguously unconditional 
(nonlinearity of the first group). 

 This scheme is described by the following algebraic-differential system of equations:  
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Рис. 4.5.  Струм вентиля на періоді
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Рис. 4.6. Схема з  дроселем
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Fig. 4.5  Valve current per period 

Fig. 4.6  Scheme with  
      magnetic choke 
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here                                         tEe m ωsin=                                                          (4.30)                      

  -   external electromotive force; 
  321 ,, iii   -    circuit branch currents;    
  ][ 222 iuu =   -  the voltage on the active resistance of the second branch is a non-linear 
function of the current   2i   ;     

  321 ,, φφφ   -   flux coupling of the inductances of the branches, at the same time 
 
                                       222111 ; iLiL == φφ   ,                                                 (4.31) 
 
  1L   ,  2L    - constant inductances of the first two branches; 
    
                                        ][ 3333 iiL Дφφ +=  ,                                                     (4.32) 
 
   3L    - constant inductance of the third branch; 
 
                                         ][ 3iДД φφ =                 (4.33) 

-  the magnetization curve of the choke in the third branch, it is hysteretic. 

        Equations (4.29) are reduced to the form (1.66) if we denote: 
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At the same time, the matrix    B  of the form (1.69) is as follows: 
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           The matrices of differential parameters necessary for building an instant model of the 
process have the form 
                                    )][,,( 3321 iLLLLdiagxdyd д

Д+= ;                    (4.36) 
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here    −== ][ 33 iLiddL д

ДД
д
Д φ  the differential inductance of the choke of the third branch 

is a non-linear function of the current 3i ;   ][ 22222 iridudr ∂∂ ==  - the differential active 
resistance of the second branch is a nonlinear function of the current  2i .    
          Values are accepted for calculation 
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       Let the nonlinear dependence  ][ 222 iuu =   be defined analytically and have the form 

                                                     )( 3
2222 iiru α+=                                                  (4.38) 

at    
                                  Омr 5.72 =     і    24 /1101.0 A−⋅=α , 
           

and the Weber-ampere characteristic of the 
choke is given graphically (see Fig. 4.7), its three 
branches (upper, middle (main) and lower) are 
given for calculation by tables. 
       The block of user program components 
in this task consists of the main Program Hister 
program and the Model procedure of the 
instantaneous half-period model of the process. 
       To process the results and write them to 
the output file, the standard OUTP procedure from 
Block 5 of the DHM-S is used, so it is not included 
in the user block here 
          The main program of the user software 
component block is as follows. 
 

Fig. 4.7. Weber-Ampere characteristic of choke 

 V
 

Hn; 

Om; Om 

Om; 

Web
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      PROGRAM Hister 
!---   a program for calculating of periodic process  
!---   in a circuit with a hysteresis inductance 
!---   (only odd harmonics are present in the currents) 
!------------------------- 
  Implicit none 
  real,dimension(32)::X 
  real,dimension(30)::E 
  integer,dimension(10)::KER 
  real,dimension(3,3)::B 
  real,dimension(3,20)::PS3 
  real::AL1,AL2,AL3,R1,R2,ALF,R3,XL,XP,DI 
  real::Em,OM,EPS1,EPS2,DH,H1,HM 
  integer::i,NT3,K,NG,NK,j 
  Common/MPM/B,AL1,AL2,AL3,R1,R2,ALF,R3,NT3,XL,XP,DI,PS3 
!----   Common/MPM/ passes data to the Model procedure 
             open(1,File='DaniV.dat',status='old') 
  read(1,1)Em,OM,EPS1,EPS2,DH,H1,HM 
  read(1,1)B 
  read(1,1)AL1,AL2,AL3,R1,R2,ALF,R3 
  read(1,2)NT3 
  read(1,1)XL,XP,DI 
  read(1,5) ((PS3(i,j),i=1,3),j=1,NT3) 
!-----  input of choke magnetization loop data   
              read(1,2)KER 
  read(1,2)K 
!------  KER -  array of control variables   
!--------  K - the order of the system of differential equations 
    1 format(4E10.4) 
    2 format(10I3) 
    5 format(3E10.4) 
       close(1) 
       open(1,FILE='RezV.DAT') 
       write(1,10) 
   10 format(/5X, 'Input data of the task :'/) 
         write(1,4)Em,OM,EPS1,EPS2,DH,H1,HM 
         write(1,4)B 
          write(1,4)AL1,AL2,AL3,R1,R2,ALF,R3 
          write(1,3)NT3 
          write(1,4)XL,XP,DI 
          write(1,6)((PS3(i,j),i=1,3),j=1,NT3) 
         write(1,3)KER 
         write(1,3)K 
    3 format(2X,10I5) 
    4 format(2X,4E12.4) 
    6 format(2X,3E12.4) 
        call SizesV(KER(1),K,KER(8),NG,NK) 
         write(1,3)NG,NK 
!---  a composite vector of amplitudes of forcing force   
!---  and the initial value of the vector Х  are formed   
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         E=0.;  E(NG+2)=Em 
         X=0.;  X(NK+1)=OM 
        write(1,13) 
   13 format(/2X,'C a l c u l a t I o n :') 
        call HARMOSC(K,X,E,NK,HM,H1,EPS1,EPS2,KER) 
         close(1) 
         stop 
          end Program Hister 
 

 
           The main program of this package performs: 
            – a description of the variables, including a description and declaration of the sizes of 
two arrays: X(32)  is a matrix-column formed from the composite vector of current amplitudes of 
three branches of the circuit, circular frequency   ω  and parameter  h , and matrix-column E(30) 
is a composite vector of amplitudes coercive force. The specified sizes of these arrays (32 and 
30) allow you to set the maximum order of the harmonics taken into account no higher than 9 
(harmonics of odd orders only are taken into account). If a higher value of the maximum 
harmonic order is specified, the sizes of these arrays must be increased; 
           – description of the shared memory area /MPM/, with the help of which data is transferred 
to the Model procedure: matrix B of the form (3.26); inductances of three branches AL1, AL2, AL3; 
active supports R1, R3  of the first and third branches; R2  and ALF  coefficients of formula (4.38); 
the number of NT3 nodes of the table, which is used to set the hysteresis loop; left XL and right 
XP abscissas of the nodes where the upper, middle and lower branches of the loop converge; 
step between nodes DI (nodes equidistant); the PS3 array, which contains a table that specifies 
the three branches of the hysteresis loop - see section 3.2.1.2; 
           – entering input data from the DaniV.dat file; 
           – output to the RezV.dat source file of input data; 
           – appeal to the SizesV procedure; 
           – formation of the forcing force vector E; 
           – assignment of the initial value of the array X; 
           – appeal to the HARMOSC procedure. 
          The Model procedure, which implements an instantaneous (half-period) model of a 
periodic process in the scheme, looks like this: 

      Subroutine Model(AL,M,K,MK,XC,YC,ZC,YXC,ZXC,BM) 
!-- The routine implements the instant model 
!-- of a periodic process in the scheme (Fig. 4.6) 
!------------------------ 
  implicit none 
  real,intent(in)::AL 
  integer,intent(in)::M,K,MK 
  real,dimension(MK)::XC,YC,ZC 
  real,dimension(MK,K)::YXC,ZXC 
  real,dimension(K)::X,Y,Z 
  real,dimension(K,K)::YX,ZX,BM 
  real,dimension(M)::XV,PSH,LH 
  real,dimension(3,3)::B 
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  real,dimension(3,20)::PS3 
  real::AL1,AL2,AL3,R1,R2,ALF,R3,XL,XP,DI,U2 
  integer::NT3,i 
  common/MPM/B,AL1,AL2,AL3,R1,R2,ALF,R3,NT3,XL,XP,DI,PS3 
!-- through Common/MPM/ data from the main program is transferred  
     BM=B 
  do i=1,M 
    call DRAWOUTV(K,XC,MK,X,i) 
    Y(1)=AL1*X(1);  Y(2)=AL2*X(2);  Y(3)=AL3*X(3) 
               Z(1)=X(1)-X(2)-X(3) 
    U2=R2*(X(2)+ALF*X(2)**3) 
    Z(2)=R1*X(1)+U2 
    Z(3)=U2-R3*X(3) 
    ZX(1,1)=1.;   ZX(1,2)=-1.;   ZX(1,3)=-1. 
    U2=R2*(1.+3.*ALF*X(2)**2) 
    ZX(2,1)=R1;   ZX(2,2)=U2;    ZX(2,3)=0. 
    ZX(3,1)=0.;   ZX(3,2)=U2;    ZX(3,3)=-R3 
    YX(1,1)=AL1;    YX(1,2)=0.;    YX(1,3)=0. 
               YX(2,1)=0.;     YX(2,2)=AL2;   YX(2,3)=0. 
    YX(3,1)=0.;     YX(3,2)=0.;    YX(3,3)=AL3 
                call DRAWUPV(K,Y,YC,MK,i) 
    call DRAWUPV(K,Z,ZC,MK,i) 
    call DRAWUPM(K,YX,YXC,MK,i) 
    call DRAWUPM(K,ZX,ZXC,MK,i) 
  end do 
  call DRAWOUTXV(K,XC,MK,M,XV,3) 
  call HISTPER(AL,XV,M,PSH,LH,PS3,XL,XP,DI,NT3) 
  call ADDV(K,PSH,M,YC,MK,3) 
  call ADDM(K,LH,M,YXC,MK,3) 
    return 
  end subroutine Model 

 
          The first operator of the procedure BM=B  assigns to the formal parameter BM  the value 
of the matrix B from the MPM common area of the memory. Further in the procedure there is a 
loop, in which the loop parameter is the variable i - the number of the node in the half period. In 
this cycle, the following is performed: 
          – the call DRAWOUTV(K,XC,MK,X,i)  operator calls the DRAWOUTV  procedure (from Block 
5 of the DHM-S) for execution, which “extracts” from the composite nodal vector the values of 
the variables   1x  (current of the first branch),  2x  (current of the second branch) and  3x  (the 
current of the third branch) in the i -th node of the half-cycle and forms a vector from them; 
          – the values of the components of the vectors   y   and   z  (4.34) are calculated based 
on the values of the currents and the formulas (4.34) – the Y and Z arrays and differential 
parameter matrices   xdyd    (4.36), xdzd    (4.37) – the YX and ZX arrays; 
          – the operators call DRAWUPV(K,Y,YC,MK,i) and call DRAWUPV(K,Z,ZC,MK,i) the values of 
the elements of the arrays Y and Z are "inserted" into the arrays YC and ZC (the values of the 
composite nodal shape vectors are stored in the last (1.118)) in places corresponding to the i-th 
node of the half-period; 
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           – operators  call DRAWUPM(K,YX,YXC,MK,i)  and  call DRAWUPM(K,ZX,ZXC,MK,i) are 
inserting the values of the elements of the YX and ZX arrays into the YXC and ZXC arrays (the 
latter store the values of the composite matrices of nodal differential parameters of the form 
(1.127) ) in the places corresponding to the   i -th node on the half-period. 

In the cycle, the values of the elements of the arrays YC, ZC, YXC  and ZXC  are calculated, 
which correspond to all the linear connections of the diagram in fig. 4.6 and nonlinearities,which 
are included in the first group of nonlinearities (nonlinear active resistance in the second branch 
of the circuit). 

In the final part of the procedure (after the cycle), the values of the elements of the arrays 
YC, ZC, YXC  and ZXC are calculated taking into account the nonlinearity included in the third 
group - the hysteresis characteristic of the magnetization of the choke in the third branch of the 
circuit. 

 In this part of the procedure: 
 - the operator call DRAWOUTXV(K,XC,MK,M,XV,3)  "draws" from the complex nodal vector 

XC of currents the simple nodal vector XV of the current of the third branch; 
             - the operator  call HISTPER(AL,XV,M,PSH,LH,PS3,XL,XP,DI,NT3)  calls the HISTPER 
procedure (see section 3.2.1.2), which calculates the values of flux coupling (PSH matrix) and 
differential inductances (LH matrix) of the choke based on the values of the coefficient AL of the 
expansion of the hysteresis loop and the value of the nodal current vector of the third branch XV 
in the nodes on the half-cycle;  
              – operators call DV(K,PSH,M,YC,MK,3)  and  call ADDM(K,LH,M,YXC,MK,3) are adding the 
value of the flux coupling of the inductive choke at the nodes of half-period to the corresponding 
components of the matrices YC (composite nodal vector of the variable  y ) and YXC (composite 
matrix of nodal differential parameters of the form (1.127) ) .   
           Printout of DaniV.dat  file with input data: 
+.1500E 05  +.3142E 03  +.1000E-01  +.3000E-02 
+.1000E 00  +.1000E 01  +.1000E 01 
+.0000E 00  +.1000E 01  +.0000E 00  +.0000E 00 
+.1000E 01  +.1000E 01  +.0000E 00  +.0000E 00 
-.1000E 01 
+.1000E-03  +.1000E-03 +.1000E-03  +.1000E-01 
+.7500E 01  +.1000E-04  +.1000E-02 
017 
-.1750E 03  +.1750E 03  +.2500E 02 
-.4600E 02  -.4600E 02   -.4600E 02 
-.4500E 02  -.4500E 02   -.4500E 02 
-.4300E 02  -.4350E 02   -.4400E 02 
-.4000E 02  -.4150E 02   -.4300E 02 
-.2700E 02  -.3450E 02   -.4200E 02 
+.5000E 01  -.1800E 02   -.4100E 02 
+.2300E 02  -.8500E 01   -.4000E 02 
+.3000E 02  -.4000E 01   -.3800E 02 
+.3500E 02  +.0000E 00   -.3500E 02 
+.3800E 02  +.4000E 01   -.3000E 02 
+.4000E 02  +.8500E 01   -.2300E+02 
+.4100E+02  +.1800E+02   -.5000E+01 
+.4200E+02  +.3450E+02   +.2700E+02 
+.4300E+02  +.4150E+02   +.4000E+02 
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+.4400E+02  +.4350E+02   +.4300E+02 
+.4500E+02  +.4500E+02   +.4500E+02 
+.4600E 02  +.4600E 02   +.4600E+02 
001000001000000000010009000000 
003 

          The RezV.dat  file with the output data (result) after running the program is as follows: 
      Input data of the task : 
     .1500E+05   .3142E+03   .1000E-01   .3000E-02 
     .1000E+00   .1000E+01   .1000E+01 
     .0000E+00   .1000E+01   .0000E+00   .0000E+00 
     .1000E+01   .1000E+01   .0000E+00   .0000E+00 
    -.1000E+01 
     .1000E-03   .1000E-03   .1000E-03   .1000E-01 
     .7500E+01   .1000E-04   .1000E-02 
     17 
    -.1750E+03   .1750E+03   .2500E+02 
    -.4600E+02  -.4600E+02  -.4600E+02 
    -.4500E+02  -.4500E+02  -.4500E+02 
    -.4300E+02  -.4350E+02  -.4400E+02 
    -.4000E+02  -.4150E+02  -.4300E+02 
    -.2700E+02  -.3450E+02  -.4200E+02 
     .5000E+01  -.1800E+02  -.4100E+02 
     .2300E+02  -.8500E+01  -.4000E+02 
     .3000E+02  -.4000E+01  -.3800E+02 
     .3500E+02   .0000E+00  -.3500E+02 
     .3800E+02   .4000E+01  -.3000E+02 
     .4000E+02   .8500E+01  -.2300E+02 
     .4100E+02   .1800E+02  -.5000E+01 
     .4200E+02   .3450E+02   .2700E+02 
     .4300E+02   .4150E+02   .4000E+02 
     .4400E+02   .4350E+02   .4300E+02 
     .4500E+02   .4500E+02   .4500E+02 
     .4600E+02   .4600E+02   .4600E+02 
      1    0    1    0    0    0   10    9    0    0 
      3 
     10   30 
  C a l c u l a t I o n : 
   Refined value 1 root at h= 1.000 
  (the solution was obtained after the 3-rd iteration) 
 
  Amplitudes of harmonics of the 1-st variable: 
  X1(c1)= -.1862E+03  X1(s1)=  .5968E+03  X1(1)=  .6252E+03 
  X1(c3)= -.2321E+02  X1(s3)=  .9510E+02  X1(3)=  .9789E+02 
  X1(c5)= -.3233E+02  X1(s5)=  .3852E+02  X1(5)=  .5029E+02 
  X1(c7)= -.5870E+01  X1(s7)=  .1935E+02  X1(7)=  .2022E+02 
  X1(c9)= -.5311E+01  X1(s9)=  .9524E+01  X1(9)=  .1090E+02   
 
 The value of the variable in nodes of period, M =60   
-.2529E+03-.1830E+03 -.1110E+03-.4050E+02  .2562E+02  .8501E+02 
 .1363E+03 .1791E+03  .2139E+03 .2422E+03  .2654E+03  .2854E+03 
 .3037E+03 .3211E+03  .3382E+03 .3548E+03  .3706E+03  .3850E+03 
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 .3976E+03 .4081E+03  .4166E+03 .4238E+03  .4305E+03  .4376E+03 
 .4461E+03 .4564E+03  .4689E+03 .4832E+03  .4989E+03  .5149E+03 
 .5304E+03 .5445E+03  .5565E+03 .5662E+03  .5734E+03  .5786E+03 
 .5820E+03 .5841E+03  .5851E+03 .5851E+03  .5839E+03  .5814E+03 
 .5772E+03 .5713E+03  .5639E+03 .5554E+03  .5465E+03  .5380E+03 
 .5309E+03 .5254E+03  .5217E+03 .5191E+03  .5160E+03  .5107E+03 
 .5007E+03 .4837E+03  .4577E+03 .4214E+03  .3744E+03  .3176E+03 
 
  Amplitudes of harmonics of the 2-st variable: 
  X2(c1)= -.2024E+01  X2(s1)=  .5971E+03  X2(1)=  .5971E+03 
  X2(c3)= -.1578E+01  X2(s3)=  .9529E+02  X2(3)=  .9530E+02 
  X2(c5)= -.1241E+01  X2(s5)=  .3880E+02  X2(5)=  .3882E+02 
  X2(c7)= -.9343E+00  X2(s7)=  .1948E+02  X2(7)=  .1950E+02 
  X2(c9)= -.5976E+00  X2(s9)=  .9601E+01  X2(9)=  .9620E+01 
   
 The value of the variable in nodes of period, M =60   
-.6376E+01 .6135E+02  .1264E+03  .1861E+03  .2385E+03  .2823E+03 
 .3174E+03 .3445E+03  .3652E+03  .3810E+03  .3940E+03  .4057E+03 
 .4173E+03 .4294E+03  .4419E+03  .4546E+03  .4668E+03  .4779E+03 
 .4872E+03 .4947E+03  .5004E+03  .5047E+03  .5080E+03  .5110E+03 
 .5141E+03 .5175E+03  .5211E+03  .5247E+03  .5277E+03  .5299E+03 
 .5307E+03 .5301E+03  .5282E+03  .5251E+03  .5215E+03  .5178E+03 
 .5142E+03 .5109E+03  .5077E+03  .5044E+03  .5003E+03  .4948E+03 
 .4877E+03 .4786E+03  .4678E+03  .4557E+03  .4428E+03  .4300E+03 
 .4175E+03 .4056E+03  .3938E+03  .3810E+03  .3658E+03  .3464E+03 
 .3209E+03 .2877E+03  .2460E+03  .1957E+03  .1377E+03  .7372E+02 
 
  Amplitudes of harmonics of the 3-st variable: 
  X3(c1)= -.1842E+03  X3(s1)= -.2318E+00  X3(1)=  .1842E+03 
  X3(c3)= -.2164E+02  X3(s3)= -.1888E+00  X3(3)=  .2164E+02 
  X3(c5)= -.3109E+02  X3(s5)= -.2769E+00  X3(5)=  .3109E+02 
  X3(c7)= -.4935E+01  X3(s7)= -.1220E+00  X3(7)=  .4937E+01 
  X3(c9)= -.4713E+01  X3(s9)= -.7771E-01  X3(9)=  .4714E+01 
 
 The value of the variable in nodes of period, M =60   
-.2465E+03-.2443E+03 -.2375E+03 -.2266E+03 -.2128E+03 -.1973E+03 
-.1811E+03-.1655E+03 -.1512E+03 -.1389E+03 -.1286E+03 -.1203E+03 
-.1136E+03-.1083E+03 -.1038E+03 -.9983E+02 -.9621E+02 -.9283E+02 
-.8966E+02-.8668E+02 -.8381E+02 -.8086E+02 -.7753E+02 -.7341E+02 
-.6807E+02-.6110E+02 -.5225E+02 -.4144E+02 -.2887E+02 -.1494E+02 
-.2760E+00 .1440E+02  .2838E+02  .4102E+02  .5190E+02  .6083E+02 
 .6785E+02 .7324E+02  .7739E+02  .8073E+02  .8368E+02  .8655E+02 
 .8952E+02 .9269E+02  .9607E+02  .9969E+02  .1036E+03  .1081E+03 
 .1133E+03 .1198E+03  .1280E+03  .1381E+03  .1502E+03  .1643E+03 
 .1799E+03 .1960E+03  .2116E+03  .2256E+03  .2367E+03  .2439E+03 
  Take hysteresis into account 
  Amplitudes of harmonics of the 1-st variable: 
  X1(c1)= -.1561E+03  X1(s1)=  .6739E+03  X1(1)=  .6917E+03 
  X1(c3)= -.6535E+02  X1(s3)=  .8633E+02  X1(3)=  .1083E+03 
  X1(c5)= -.2328E+02  X1(s5)=  .2769E+02  X1(5)=  .3618E+02 
  X1(c7)= -.6093E+01  X1(s7)=  .1434E+02  X1(7)=  .1558E+02 
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  X1(c9)= -.1202E+01  X1(s9)=  .8852E+01  X1(9)=  .8933E+01 
  
 The value of the variable in nodes of period, M =60   
 -.2520E+03-.1846E+03-.1151E+03 -.4610E+02  .2006E+02  .8173E+02 
  .1380E+03 .1885E+03 .2337E+03  .2744E+03  .3114E+03  .3455E+03 
  .3775E+03 .4075E+03 .4355E+03  .4612E+03  .4843E+03  .5043E+03 
  .5211E+03 .5348E+03 .5459E+03  .5548E+03  .5624E+03  .5693E+03 
  .5761E+03 .5828E+03 .5896E+03  .5961E+03  .6020E+03  .6066E+03 
  .6098E+03 .6113E+03 .6113E+03  .6101E+03  .6082E+03  .6061E+03 
  .6043E+03 .6027E+03 .6015E+03  .6002E+03  .5982E+03  .5951E+03 
  .5905E+03 .5840E+03 .5760E+03  .5670E+03  .5576E+03  .5488E+03 
  .5413E+03 .5353E+03 .5308E+03  .5269E+03  .5222E+03  .5147E+03 
  .5023E+03 .4829E+03 .4550E+03  .4175E+03  .3705E+03  .3148E+03 
 
  Amplitudes of harmonics of the 2-st variable: 
  X2(c1)= -.2077E+01  X2(s1)=  .5971E+03  X2(1)=  .5971E+03 
  X2(c3)= -.1552E+01  X2(s3)=  .9521E+02  X2(3)=  .9523E+02 
  X2(c5)= -.1193E+01  X2(s5)=  .3881E+02  X2(5)=  .3883E+02 
  X2(c7)= -.8949E+00  X2(s7)=  .1948E+02  X2(7)=  .1950E+02 
  X2(c9)= -.5816E+00  X2(s9)=  .9626E+01  X2(9)=  .9644E+01 
  
 The value of the variable in nodes of period, M =60   
 -.6298E+01 .6143E+02 .1265E+03  .1862E+03  .2384E+03  .2822E+03 
  .3173E+03 .3444E+03 .3650E+03  .3808E+03  .3938E+03  .4055E+03 
  .4171E+03 .4292E+03 .4418E+03  .4545E+03  .4668E+03  .4778E+03 
  .4872E+03 .4947E+03 .5004E+03  .5046E+03  .5080E+03  .5110E+03 
  .5141E+03 .5175E+03 .5212E+03  .5247E+03  .5278E+03  .5300E+03 
  .5308E+03 .5302E+03 .5282E+03  .5252E+03  .5216E+03  .5178E+03 
  .5142E+03 .5109E+03 .5078E+03  .5044E+03  .5003E+03  .4949E+03 
  .4877E+03 .4786E+03 .4678E+03  .4557E+03  .4428E+03  .4300E+03 
  .4175E+03 .4056E+03 .3938E+03  .3810E+03  .3658E+03  .3464E+03 
  .3209E+03 .2877E+03 .2460E+03  .1957E+03  .1376E+03  .7366E+02 
 
  Amplitudes of harmonics of the 3-st variable: 
  X3(c1)= -.1540E+03  X3(s1)=  .7682E+02  X3(1)=  .1721E+03 
  X3(c3)= -.6380E+02  X3(s3)= -.8881E+01  X3(3)=  .6441E+02 
  X3(c5)= -.2209E+02  X3(s5)= -.1112E+02  X3(5)=  .2473E+02 
  X3(c7)= -.5198E+01  X3(s7)= -.5145E+01  X3(7)=  .7313E+01 
  X3(c9)= -.6208E+00  X3(s9)= -.7740E+00  X3(9)=  .9922E+00 
  
  The value of the variable in nodes of period, M =60   
 -.2457E+03-.2460E+03-.2415E+03 -.2323E+03 -.2184E+03 -.2005E+03 
 -.1793E+03-.1559E+03-.1312E+03 -.1064E+03 -.8244E+02 -.5999E+02 
 -.3964E+02-.2171E+02-.6293E+01  .6706E+01  .1752E+02  .2646E+02 
  .3388E+02 .4012E+02 .4547E+02  .5018E+02  .5442E+02  .5832E+02 
  .6193E+02 .6531E+02 .6847E+02  .7140E+02  .7413E+02  .7664E+02 
  .7895E+02 .8107E+02 .8303E+02  .8487E+02  .8662E+02  .8833E+02 
  .9005E+02 .9184E+02 .9373E+02  .9576E+02  .9794E+02  .1003E+03 
  .1027E+03 .1054E+03 .1082E+03  .1113E+03  .1148E+03  .1188E+03 
  .1238E+03 .1297E+03 .1371E+03  .1459E+03  .1563E+03  .1683E+03 
  .1814E+03 .1952E+03 .2089E+03  .2218E+03  .2329E+03  .2411E+03 
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           Based on the values of the third variable (current 3i )  in the  m  nodes of the half-period, 
the dependence of this current on time (angle η ) is constructed at one period. 

 
This dependence is shown in fig. 4.8. The dashed line shows the current   3i  before taking into 
account the hysteresis (calculation on the main branch of the loop), and the solid line shows the 
same current taking into account the hysteresis (calculation on the full loop). 

Analyzing these curves, as well as the value of the vector of current amplitudes before 
and after taking into account hysteresis, it is necessary to note the appearance of an active 
component of the first harmonic of the current, which is a reflection of power losses due to  
remagnetization of the choke. Indeed, without taking into account the hysteresis, the amplitude 
of the first harmonic of the current of the third branch with a choke is as follows (see the printout 
of the RezV.DAT file) AIAI sc 23.0;2.184 )1(3)1(3 −=−= . Given that the 
electromotive force in the first branch is a sine wave (see formula (4.30) ), the current of the third 
branch is almost a pure cosine wave, that is, it is inductive in nature (lags behind the 
electromotive force by 90 electric degrees), because the resistance of the third branch in is 
mainly inductive. After taking into account the hysteresis, the following values of the amplitude 
of the first harmonic of the current were obtained AIAI sc 8.76;0.154 )1(3)1(3 =−= .. 
We see the appearance of a significant sinusoidal component in the first harmonic of the current, 
which is in phase with the electromotive force, that is, it is active and causes losses due to 
remagnetization.  

The reader is invited to conduct a numerical experiment on the described model: to specify 
several variants of the hysteresis loop with different areas and to make sure that the calculated 
power losses due to remagnetization of the choke core will be proportional to the area of the 
hysteresis loop [4, 41]. 

                                  Fig. 4.8.  Current of 3-th branch 
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                    4.2. Tests and examples of self-oscillation calculations 
 

           In this section, several examples of numerical simulation of self-oscillations in nonlinear 
systems with various types of nonlinear connections are given. These are examples A.1 - A.4. 
In each example of this group, the value  2  is assigned to the fourth element KER(4)  of the 
control array KER  before calling the HARMOSC  routine in the main program of the user program 
component block. 

 
4.2.1. Example  А.1 

  
           As the first problem, as an example of numerical modeling of self-oscillations, we will 
consider the determination of the periodic solution of a nonlinear differential equation 

 
                                            0)1( 2 =+−+ xxxx  µ ,                                         (4.39) 
                     
which describes, in particular, the motion of a pendulum with nonlinear damping. This equation 
is known in the literature as Van der Pol's equation. Its nonlinearity is unconditionally 
unambiguous (nonlinearity of the first group) and is given analytically. 
           It is shown in  [27]  that the determination of the periodic solution of equation (4.39) can 
be carried out by the asymptotic Bogolyubov-Mitropolsky method, but only for values of the 
coefficient   1<<µ , when the oscillations described by this equation are almost harmonic. 
When the values of this coefficient are close to 1, and especially when  1>>µ   the oscillations 
are polyharmonic and have a relaxation character, it is recommended in [27] to use other 
methods, in particular, the method of A. Dorodnitsin (asymptotic approximation by powers of 
µ1 ). 

           This example shows that during the numerical modeling by the differential harmonic 
method of nonlinear self-oscillations described by equation (4.39), no restrictions are imposed 
on the value of the coefficient µ   . 
           We reduce equation (4.39) to form (1.65): 

 

                                                       0=−+ ez
dt

xd 



                                          (4.40) 

with designations 
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           (4.41а,б) 

 
           The value of the derivative xdzd  , which is necessary in the formation of the 
instantaneous (half-period) mathematical model of the system, is as follows 
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.                             (4.42) 

 
              The text of the main program of the block of user software components for numerical 
simulation of self-oscillations described by equation (4.39) has the form: 
 

      Program Van_der_Pol 
!--   Program for determination of periodic solutions 
!--  van der Pol’s equation 
!--       dX/dt+Z=E 
!--       X=colon(x1,x2) 
!--       Z=colon(z1,z2) 
!--       E=colon(e1,e2) 
!--       z1=-x2;    z2=x1-mju*(1-x1**2)*x2 
!--       e1=0;  e2=0 
!--  (variables contain only odd harmonics) 
!----------------------------------------- 
  Implicit none 
  real,dimension(42)::Y0 
  real,dimension(40)::E 
  integer,dimension(10)::KER 
  real::mju,OM,EPS1,EPS2,H1,HM 
  real::X1C1,X1S1,X2C1,X2S1 
  integer::K,NG,NK 
  common/MP/mju   !--- area of memory shared with the Model procedure 
               open(1,File='DaniVan.dat',status='old') 
  read(1,1)mju 
  read(1,1)EPS1,EPS2,H1,HM 
!-----  EPS1 – accuracy of integration 
!-----  EPS2 – accuracy for Newton’s method 
!-----  H1 – the value of  h  at which it is nessesary todetermine the root more precisely 
!-----  HM – the maximum value of h 
  read(1,2)KER 
     read(1,2)K 
  read(1,1)OM 
  read(1,1)X1C1,X1S1,X2C1,X2S1 
!-----  KER – an array of controlvariables 
!-----  K – the order of the system of differentialequations 
!-----  X1C1,X1S1,X2C1,X2S1 – initial approximations of the amplitudes 
!-----       of first harmonics of variablts  X1  and   X2   
    1 Format(4E10.4) 
    2 Format(10I3) 
       close(1) 
        open(1,file='RezVan.dat') 
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       write(1,5) 
    5 format(2X,'Periodic solution of the van der Pol’s equation' /10X,'Entered data:') 
        write(1,14)mju 
   14 format(2X,' mju=',E10.4) 
         write(1,15)EPS1,EPS2,H1,HM 
   15 format(2X,' EPS1=',E10.4,' EPS2=',E10.4,' H1=',E10.4,' HM=',E10.4) 
         write(1,16)KER 
   16 format(2X,’KER=’,10i5) 
          write(1,17)K 
   17 format(2X,' K=',i2) 
        write(1,18)OM 
   18 format(2X,'OM=',E11.4) 
        write(1,19)X1C1,X1S1,X2C1,X2S1 
   19 format(2X,'X1C1=',E11.4,' X1S1=',E11.4,' X2C1=',E11.4,' X2S1=',E11.4) 
    3 Format(2X,8I5) 
          call SizesV(KER(1),K,KER(8),NG,NK) 
  write(1,3)NG,NK 
!-----  NG – the number of elements of a simple vector of amplitudes 
!-----  NK – the number of elements of a composite vector of amplitudes  
  Y0=0;  Y0(NK+1)=OM 
  Y0(1)=X1C1; Y0(2)=X1S1; Y0(NG+1)=X2C1; Y0(NG+2)=X2S1 
!----  formed the initial of the Y0  vector 
        write(1,13) 
   13 format(/2X,'C a l c u l a t I o n :') 
         call HARMOSC(K,Y0,E,NK,HM,H1,EPS1,EPS2,KER) 
         close(1) 
         stop 
         end Program Van_der_Pol 
 
 

           The text of the Model  program, which implements the instantaneous (half-cycle) process 
model: 
 

     Subroutine Model(AL,M,K,MK,XC,YC,ZC,YXC,ZXC,BM) 
!--  The procedure of the instaneous model (on the half-period of the process, 
!--   which is described by equation (4.39)  
 Implicit none 
 real::AL 
 integer,intent(in)::M,K,MK 
 real,dimension(MK)::XC,YC,ZC 
 real,dimension(MK,K)::YXC,ZXC 
 real,dimension(K)::X,Z 
 real,dimension(K,K)::ZX,BM 
 real::mju 
 integer::i 
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 Common/MP/mju   !--  area of memory shared with the main program 
 BM(1,1)=0.;  AL=0. 
 YC(1)=0.;  YXC(1,1)=0. 
 do i=1,M 
     call DRAWOUTV(K,XC,MK,X,i) 
     Z(1)=-X(2) 
     Z(2)=X(1)-mju*(1.-X(1)**2)*X(2) 
     ZX(1,1)=0.;    ZX(1,2)=-1. 
     ZX(2,1)=1.+2.*mju*X(1)*X(2) 
     ZX(2,2)=mju*(X(1)**2-1.) 
     call DRAWUPV(K,Z,ZC,MK,i) 
     call DRAWUPM(K,ZX,ZXC,MK,i) 
 end do 
 return 
 end Subroutine Model 
 
          In this procedure, the formal parameters AL and BM are not used, because the nonlinearity 
of equation (4.39) does not belong to the third group - it is not hysteretic - and equation (4.39) in 
the notation (4.40) is in the normal Cauchy form, that is, it is reduced to the form (1.65 ). For the 
same reason, the first four operators 
                   BM(1,1)=0.;  AL=0. 
               YC(1)=0.;  YXC(1,1)=0. 

perform unnecessary operations, their purpose is to block the compiler's message when 
compiling the procedure that the specified formal parameters in the body of the procedure are 
not used. 
           Since there are no nonlinearities of the second or third groups in the problem, all the 
actions of the procedure (calculation of the values of the composite nodal vector ZC and the 
composite matrix of nodal parameters ZXC ) are performed in the main cycle of the procedure. 

           Printout of the DaniVan.dat file with input data: 

.3000E+01 

.1000E-02  .1000E-03  .1000E+01  .1000E+01 
1 1 0 2 0 0 0 9 0 0 
  2 
.8000E+00 
.2000E+01  .0000E_00  .0000E+00   -.2000E+01 
 

Printout of the RezVan.dat file with the calculation results: 

 



166 
 

 
 Periodic solution of the van der Pol’s equation 
 
          Entered data: 
   mju= .3000E+01 
   EPS1=.1000E-02  EPS2=.1000E-03  H1=.1000E+01  HM=.1000E+01 
   KER=   1    1    0    2    0    0    0    9   0    0 
   K= 2 
  OM = .8000E+00 
  X1C1=.2000E+01  X1S1=.0000E+00  X2C1=.0000E+00 X2S1=-.2000E+01 
     10   20 
 
  C a l c u l a t I o n : 
  
  Refined value 1 root at h= 1.000 
  (the solution was obtained after the 2-rd iteration) 
 
  Amplitudes of harmonics of the 1-st variable: 
  X1(c1)=  .2074E+01   X1(s1)= -.7973E-10   X1(1)=  .2074E+01 
  X1(c3)= -.3668E+00   X1(s3)= -.3408E+00   X1(3)=  .5007E+00 
  X1(c5)=  .1400E-01   X1(s5)=  .2272E+00   X1(5)=  .2276E+00 
  X1(c7)=  .8226E-01   X1(s7)= -.9589E-01   X1(7)=  .1263E+00 
  X1(c9)= -.8103E-01   X1(s9)=  .1747E-01   X1(9)=  .8289E-01 
 
  The value of the variable in nodes of period, M =60   
  .1723E+01 .1706E+01 .1698E+01  .1694E+01  .1691E+01  .1682E+01 
  .1665E+01 .1638E+01 .1602E+01  .1560E+01  .1516E+01  .1476E+01 
  .1443E+01 .1420E+01 .1405E+01  .1396E+01  .1386E+01  .1372E+01 
  .1346E+01 .1307E+01 .1253E+01  .1189E+01  .1119E+01  .1050E+01 
  .9875E+00 .9356E+00 .8940E+00  .8581E+00  .8189E+00  .7644E+00 
  .6813E+00 .5578E+00 .3858E+00  .1629E+00 -.1062E+00 -.4104E+00 
 -.7328E+00-.1053E+01-.1351E+01 -.1609E+01 -.1813E+01 -.1957E+01 
 -.2042E+01-.2075E+01-.2069E+01 -.2039E+01 -.1998E+01 -.1959E+01 
 -.1930E+01-.1914E+01-.1910E+01 -.1913E+01 -.1917E+01 -.1917E+01 
 -.1907E+01-.1886E+01-.1855E+01 -.1819E+01 -.1781E+01 -.1748E+01 
 
  Amplitudes of harmonics of the 2-st variable: 
  X2(c1)= -.5166E-06  X2(s1)= -.1472E+01  X2(1)=  .1472E+01 
  X2(c3)= -.7254E+00  X2(s3)=  .7808E+00  X2(3)=  .1066E+01 
  X2(c5)=  .8060E+00  X2(s5)= -.4967E-01  X2(5)=  .8075E+00 
  X2(c7)= -.4763E+00  X2(s7)= -.4086E+00  X2(7)=  .6275E+00 
  X2(c9)=  .1115E+00  X2(s9)=  .5175E+00  X2(9)=  .5293E+00 
 
The value of the variable in nodes of period, M =60   
 -.2841E+00 -.1624E+00 -.7238E-01 -.3898E-01 -.7235E-01 -.1654E+00 
 -.2959E+00 -.4318E+00 -.5397E+00 -.5929E+00 -.5787E+00 -.5015E+00 
 -.3826E+00 -.2546E+00 -.1545E+00 -.1137E+00 -.1503E+00 -.2643E+00 
 -.4361E+00 -.6309E+00 -.8068E+00 -.9244E+00 -.9579E+00 -.9026E+00 
 -.7784E+00 -.6279E+00 -.5092E+00 -.4843E+00 -.6055E+00 -.9031E+00 
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 -.1376E+01 -.1990E+01 -.2678E+01 -.3352E+01 -.3917E+01 -.4289E+01 
 -.4404E+01 -.4236E+01 -.3801E+01 -.3149E+01 -.2364E+01 -.1542E+01 
 -.7787E+00 -.1535E+00  .2833E+00  .5162E+00  .5641E+00  .4733E+00 
  .3063E+00  .1279E+00 -.7587E-02 -.6567E-01 -.3667E-01  .6542E-01 
  .2090E+00  .3543E+00  .4638E+00  .5113E+00  .4881E+00  .4039E+00 

  Circular frequency of the fundamental harmonic =  .7095E+00 

 

      

          These results refer to the version of 
calculations at µ = 3.0  and  9=n .. 
           According to the obtained values of the 
variables 1x  and  2x  at the nodes on the half-
period in fig. 4.9, the limit cycle for simulated self-
oscillations (dependence of the variable 2x  

(speed) on the variable  1x  (deviation)) is 
constructed. 
           For the same value of µ , calculations were 
performed for other values of n , their results are 
shown in table 4.2. As can be seen from this table, 
the amplitude of the 15th harmonic of the variable 
does not exceed 1% of the value of the amplitude of 
the 1st harmonic, and it makes almost no sense to 

                                                                      further increase the number of harmonics taken into  
                                                                      account. 

                 Table 4.2. Results of self-oscillation calculation at µ  = 3.0 
 

n  
)1(1X  )3(1X  )5(1X  )7(1X  )9(1X  )11(1X  )13(1X  )15(1X  ω  

 1 2.0        1.0 
 3 2.102 0.5329       0.8212 
 5 2.087 0.5391 0.2741      0.7304 
 7 2.074 0.5068 0.2433 0.1499     0.7105 
 9 2.074 0.5007 0.2276 0.1263 0.0829    0.7095 
11 2.075 0.5001 0.2249 0.1197 0.0704 0.0433   0.7094 
13 2.075 0.5000 0.2244 0.1183 0.0673 0.0407 0.0276  0.7093 
15 2.075 0.5000 0.2243 0.1179 0.0665 0.0391 0.0241 0.0164 0.7093 

 
 
 

 

       Fig. 4.9   Limit cycle 
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                      4.2.2.  Example А.2 

 
In this example, the definition of self-oscillation parameters in the third-order automatic 

control system described by the equation is considered 
 
                                         022 =+++ xsignbxxTxT  ξ .    (4.43) 
 
           To determine the periodic solution of this equation, the method of harmonic linearization 
was used in [56], it is presented there as example 4.2.2. At the same time, fluctuations of the 
variable are sought in the form 
                                                             tAx ωsin= .                                           (4.44) 
 
By the method of harmonic linearization in [56] obtained  
 

                                          
T
1

=ω ;             
πξ
bTA 2

= .                                        (4.45) 

 
 If specified by numerical values 
  
                                      07.0;0.10;0.1 === ξbT , 
 
then by formulas (4.45) we obtain: 0.1=ω   and  95.90=A  . 
          Let's solve the same problem by means of numerical modeling using DGM software. For 
this equation (4.43) we reduce to the form (1.65): 
 

                                                    0=−+ ez
dt

xd 



,                                               (4.46) 
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                                                   221
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         The software components of the user block in this example are as follows. 
 
         1. The main program: 
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      Program SAR 
!-- Program for determining periodic solutions 
!-- the equation describing the self-oscillating mode 
!-- automatic regulation systems 
!--      dX/dt+Z=0 
!--     X=colon(x1,x2,x3) 
!--    Z=colon(z1,z2,z3) 
!--     z1=-x2; z2=-x3; z3=c1*x3+c2*x2+c3*sign(x1) 
!--  (variables contain only odd harmonics) 
!----------------------------------------- 
  Implicit none 
  real,dimension(42)::Y0 
  real,dimension(40)::E 
  integer,dimension(10)::KER 
  real::A,D,T,C1,C2,B,OM,EPS1,EPS2,H1,HM 
  real::X1C1,X1S1,X2C1,X2S1,X3C1,X3S1 
  integer::K,NG,NK 
  common/MP/C1,C2,B   !--- area of memory shared with the Model procedure 
              open(1,File='DaniVan.dat',status='old') 
  read(1,*)D,T,B 
  read(1,*)EPS1,EPS2,H1,HM 
!-----  H1 – the value of  h  at which it is nessesary todetermine the root more precisely 
!-----  HM – the maximum value of h 
!-----  EPS1 – accuracy of integration 
!-----  EPS2 – accuracy for Newton’s method 
  read(1,*)KER 
     read(1,*)K 
!-----  KER – an array of controlvariables 
!-----  K – the order of the system of differentialequations 
  close(1) 
             open(1,file='RezVan.dat') 
  write(1,5) 
    5 format(2X,'Periodic solution of the SAR equation’ /10X,'Entered data:') 
         write(1,14)D,T,B 
   14 format(2X,'Dzeta=',E10.4,' T=',E10.4,' B=',E10.4) 
  write(1,15)EPS1,EPS2,H1,HM 
   15 format(2X,' EPS1=',E10.4,' EPS2=',E10.4,' H1=',E10.4,' HM=',E10.4) 
  write(1,16)KER 
   16 format(2X,’ KER=’,10i5) 
    write(1,17)K 
   17 format(2X,' K=',i2) 
         OM=1./T;  A=2.*B*T/(3.14159*D) 
  write(1,18)OM,A 
   18 format(2X,'OM=',E11.4,'  A=',E11.4) 
  X1C1=A; X1S1=0.; X2C1=0.; X2S1=-OM*A 
         X3C1=-OM**2*A; X3S1=0. 
!--- X1C1,X1S1,X2C1,X2S1,X3C1,X3S1 – initial values 
!--------- of the amplitudes of the first harmonics of variables 
  write(1,19)X1C1,X1S1,X2C1,X2S1,X3C1,X3S1 
   19 format(2X,'X1C1=',E11.4,' X1S1=',E11.4,' X2C1=',E11.4, 
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      &  ' X2S1=',E11.4,' X3C1=',E11.4,' X3S1=',E11.4) 
    3 Format(2X,10I5) 
  C1=2.*D/T;  C2=1./T**2 
      call SizesV(KER(1),K,KER(8),NG,NK) 
  write(1,3)NG,NK 
!-----  NG – the number of elements of a simple vector of amplitudes 
!-----  NK – the number of elements of a composite vector of amplitudes  
  Y0=0;  Y0(NK+1)=OM 
  Y0(1)=X1C1; Y0(2)=X1S1; Y0(NG+1)=X2C1; Y0(NG+2)=X2S1 
  Y0(2*NG+1)=X3C1; Y0(2*NG+2)=X3S1 
!----  formed the initial of the Y0  vector 
        write(1,13) 
   13 format(/2X,'C a l c u l a t o I n :') 
        call HARMOSC(K,Y0,E,NK,HM,H1,EPS1,EPS2,KER) 
        close(1) 
        stop 
        end Program SAR 

 
          In this program, the real variables  D, T, B  correspond to the variables  ξ  ,  T  and  b  in 
equations (4.43) and the variables OM, A  correspond to the variables  ω   and  A  from the 
formulas (4.45). Based on the values of the last two variables, the initial values of the amplitudes 
of the first harmonics of the variables   321 ,, xxx   are calculated. 

 2. The procedure that implements the instantaneous (on half-period) model of the system: 
 

      Subroutine Model(AL,M,K,MK,XC,YC,ZC,YXC,ZXC,BM) 
!--  The procedure of the instantaneous model of the ssystem on half-period  
!------------------- 
  Implicit none 
  real::AL 
  integer,intent(in)::M,K,MK 
  real,dimension(MK)::XC,YC,ZC 
  real,dimension(MK,K)::YXC,ZXC 
  real,dimension(K)::X,Z 
  real,dimension(K,K)::ZX,BM 
  real::C1,C2,B 
  integer::i 
  common/MP/C1,C2,B    !--  area of memory shared with the main program 
  BM(1,1)=0.;  AL=0. 
  YC(1)=0.;  YXC(1,1)=0. 
  do i=1,M 
    call DRAWOUTV(K,XC,MK,X,i) 
       Z(1)=-X(2) 
    Z(2)=-X(3) 
    Z(3)=C1*X(3)+C2*X(2)+C2*sign(B,X(1)) 
    ZX(1,1)=0.;  ZX(1,2)=-1.;  ZX(1,3)=0. 
    ZX(2,1)=0.;  ZX(2,2)=0.;   ZX(2,3)=-1. 
    ZX(3,1)=0.;  ZX(3,2)=C2;   ZX(3,3)=C1 
                call DRAWUPV(K,Z,ZC,MK,i) 
    call DRAWUPM(K,ZX,ZXC,MK,i) 
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  end do 
 return 
 end  Subroutine Model 

 
           As in the previous example A1, the formal parameters AL and BM are not used in the 
Model  procedure for this example, because the nonlinearity of equation (4.43) is not hysteretic 
(does not belong to the third group) and equation (4.43) in the notation (4.46) is in to the normal 
Cauchy form, that is, it does not reduce to the form (1.67). For the same reason, the first four 
operators perform unnecessary operations, their purpose is to block the compiler's message 
when compiling the procedure that the specified formal parameters in the body of the procedure 
are not used. 
           Since there are no nonlinearities of the second or third groups in the problem, all the 
actions of the procedure (calculation of the values of the composite nodal vector ZC  and the 
composite matrix of nodal parameters ZXC ) are performed in the main cycle of the procedure. 
          After carrying out the calculation using this program, taking into account only the first 
harmonic for a small value of  ξ = 0.07, the result A = 91.65 and   ω = 0.9954 was obtained, 
which is quite close to the one obtained in [56] by the method of harmonic linearization. The 
deviation in amplitude does not exceed 0.5% and in frequency - 0.3%. 
         The calculation of the same option, but with  5=n , gave the following result: 
 
  Periodic solution of the SAR equation 
          Entered data: 
  Dzeta= .7000E-01 T= .1000E+01 B= .1000E+02 
   EPS1= .1000E-02 EPS2= .1000E-03 H1= .1000E+01 HM= .1000E+01 
   KER =  1    1    0    2    0    0    0    5    0    0 
   K= 3 
  OM=  .1000E+01  A=  .9095E+02 
X1C1= .9095E+02 X1S1= .0000E+00 X2C1= .0000E+00 X2S1= -.9095E+02 
X3C1= -.9095E+02 X3S1=  .0000E+00 
      6   18 
  C a l c u l a t i o n : 
    Number of the highest harmonic = 5 
 Refined value 1 root at h= 1.000 
  (the solution was obtained after the 2-rd iteration) 
   
  Amplitudes of harmonics of the 1-st variable: 
  X1(c1)=  .9145E+02  X1(s1)=  .0000E+00  X1(1)=  .9145E+02 
  X1(c3)=  .1396E-01  X1(s3)= -.1783E+00  X1(3)=  .1789E+00 
  X1(c5)= -.4060E-02  X1(s5)=  .2120E-01  X1(5)=  .2158E-01 
 
  Amplitudes of harmonics of the 2-st variable: 
  X2(c1)=  .8884E-05  X2(s1)= -.9117E+02  X2(1)=  .9117E+02 
  X2(c3)= -.5333E+00  X2(s3)= -.4176E-01  X2(3)=  .5350E+00 
  X2(c5)=  .1057E+00  X2(s5)=  .2023E-01  X2(5)=  .1076E+00 
   
  Amplitudes of harmonics of the 3-st variable: 
  X3(c1)= -.9089E+02  X3(s1)= -.2267E-05  X3(1)=  .9089E+02 
  X3(c3)= -.1250E+00  X3(s3)=  .1595E+01  X3(3)=  .1600E+01 
  X3(c5)=  .1007E+00  X3(s5)= -.5268E+00  X3(5)=  .5363E+00 
 
    Circular frequency of the fundamental harmonic = .9969E+00 
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           As we can see, at  ξ = 0.07 the content of higher harmonics in the solution is negligible. 
           For large values  ξ , the calculation results obtained by the harmonic linearization method 
and the proposed method differ more. If we set 0.7=ξ  (with the same 0.10;0.1 == bT ) 
then by formulas (4.45) we obtain  0.1=ω  and 9095.0=A . 
           Next is a printout of the results of numerical simulation at  ξ =7.0 and taking into account 
the first, third and fifth harmonics (printout of the RezVan.dat file): 

 
  Periodic solution of the SAR equation 
          Entered data: 
  Dzeta= .7000E+01 T= .1000E+01 B= .1000E+02 
   EPS1= .1000E-02 EPS2= .1000E-03 H1= .1000E+01 HM= .1000E+01 
   KER =   1    1    0    2    0    0    0    5    0    0 
   K= 3 
  OM=  .1000E+01  A=  .9095E+00 
  X1C1=.9095E+00 X1S1=.0000E+00 X2C1=.0000E+00 X2S1= -.9095E+00 
  X3C1= -.9095E+00 X3S1=  .0000E+00 
      6   18 
 
  C a l c u l a t i o n : 
     Number of the highest harmonic = 5 
  Refined value 1 root at h= 1.000 
  (the solution was obtained after the 2-rd iteration) 
   
  Amplitudes of harmonics of the 1-st variable: 
  X1(c1)=  .1660E+01  X1(s1)=  .0000E+00  X1(1)=  .1660E+01 
  X1(c3)= -.5919E-01  X1(s3)= -.1553E-01  X1(3)=  .6119E-01 
  X1(c5)=  .1166E-01  X1(s5)=  .5756E-02  X1(5)=  .1301E-01 
 
  Amplitudes of harmonics of the 2-st variable: 
  X2(c1)=  .4941E-07  X2(s1)= -.1228E+01  X2(1)=  .1228E+01 
  X2(c3)= -.3448E-01  X2(s3)=  .1314E+00  X2(3)=  .1359E+00 
  X2(c5)=  .2130E-01  X2(s5)= -.4316E-01  X2(5)=  .4813E-01 
 
  Amplitudes of harmonics of the 3-st variable: 
  X3(c1)= -.9089E+00  X3(s1)= -.3584E-07  X3(1)=  .9089E+00 
  X3(c3)=  .2917E+00  X3(s3)=  .7656E-01  X3(3)=  .3016E+00 
  X3(c5)= -.1597E+00  X3(s5)= -.7880E-01  X3(5)=  .1781E+00 
 
  Circular frequency of the fundamental harmonic =  .7400E+00 

 
           As you can see, the amplitude of the first harmonic of the variable  1x  (taking into account 
the first, third and fifth harmonics) is 1.66 and the circular frequency is 0.74. Here, the calculation 
results differ from those obtained by the harmonic linearization method (0.905 and 1.0), 
respectively, by 82% and 26%. 
          The results depend significantly on the number of higher harmonics taken into account, 
which is illustrated in Table 4.3. 
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                                         Table 4.3. The results of solving equation (4.43) 
 

  n  )1(1X  )3(1X  )5(1X  )7(1X  )9(1X  )11(1X  ω  

  1 2.207      0.6414 
  3 2.207 0.082     0.6414 
  5 1.66 0.061 0.013    0.74 
  7 1.432 0.053 0.011 0.004   0.7968 
  9 1.31 0.048 0.01 0.0036 0.0016  0.8334 
11 1.233 0.045 0.0095 0.0033 0.0015 0.0008 0.8589 
 

           This problem, unlike others given in this section, confirms the admissibility of applying the 
harmonic linearization method to its solution: when increasing the number of considered 
harmonics, the value of the amplitude of the first harmonic approaches 0.9095 and the value of 
the circular frequency - to 1.0, that is, the values obtained by the method of harmonic 
linearization. Thus, when harmonics up to and including the 23rd are taken into account, these 
variables take, respectively, the values of 1.059 (16% deviation) and 0.9266 (7% deviation). 
          The obtained result can be explained by the specificity of nonlinearity - it is a discontinuous 
function   xsignby =   that is sharply nonlinear (discontinuity of the first kind) only in the 
vicinity of the zero value of the variable  x . The discontinuity of the function is the reason for 
the poor convergence of the Fourier series approximating the periodic dependence of the 
variables of this problem (many harmonics must be taken into account). 

 
 

4.2.3. Example  А .3 
 

          Consider example 4.1.2 from [56], this is the calculation of the self-oscillating mode 
described by the equation 
                                             0)( 222

0 =−++ xbxxx  αω .                                (4.49) 
 
When considering this example in [56], the analytical method of harmonic balance is used and 
the solution is sought in the form 
 
                                                       tax ωsin= .                                                  (4.50) 
 
When applying this method, the amplitude  a  and circular frequency  ω   values were obtained 
in [56] by solving algebraic equations 
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from which it is obtained 
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                                                 ba 2;0 ==ωω .                                              (4.52)             
If given values 
   
                                      5.0;5.1;5.0 0 === ωα b   ,                                     (4.53) 

then we will get it 
                                               0.3=a ;         5.0=ω  .                                        (4.54) 
 
           We will calculate these self-oscillations (considering them as polyharmonic) by means of 
numerical simulation using DHM-S. For this equation (4.49) we write in the form (1.65): 
                           

                                                     0=−+ ez
dt
xd 



,                                                 (4.55) 

here 
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The expression for the derivative xdzd  , which is necessary for constructing an instantaneous 
(half-cycle) mathematical model of the process, has the form 
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 .                               (4.57) 

 
The block of user program components for this case consists of the main Program Avto 

program and the Model procedure of the instantaneous process model. 
To process the results and write them to the output file, the standard OUTP procedure 

from Block 5 of the DHM-S is used, so it is not included in the user block here. 
The main Program Avto program and the Model procedure of this block look like this: 

 
      Program Avto 
!--     dX/dt+Z=E 
!--     X=colon(x1,x2) 
!--     Z=colon(z1,z2) 
!--     E=colon(e1,e2) 
!--     z1=-x2;    z2=A*(x1**2-B**2)*x2+C*x1 
!--     e1=0;  e2=0 
!--  (variables contain only odd harmonics) 
!----------------------------------------- 
  Implicit none 
  real,dimension(42)::Y0 
  real,dimension(40)::E 
  integer,dimension(10)::KER 
  real::A,B,C,OM,EPS1,EPS2,H1,HM 
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  real::X1C1,X1S1,X2C1,X2S1 
  integer::K,NG,NK 
  common/MP/A,B,C  !--- area of memory shared with the Model procedure 
              open(1,File='DaniVan.dat',status='old') 
  read(1,*)A,B,C 
  read(1,*)EPS1,EPS2,H1,HM 
!-----  H1 – the value of  h  at which it is nessesary todetermine the root more precisely 
!-----  HM – the maximum value of h 
!-----  EPS1 – accuracy of integration 
!-----  EPS2 – accuracy for Newton’s method 
  read(1,*)KER 
     read(1,*)K 
  read(1,*)OM 
  read(1,*)X1C1,X1S1,X2C1,X2S1 
!-----  KER – an array of controlvariables 
!-----  K – the order of the system of differentialequations 
!-----  X1C1,X1S1,X2C1,X2S1 – initial approximations of the amplitudes 
!-----                                              of first harmonics of variablts  X1  and   X2   
    1 format(4E10.4) 
    2 format(10I3) 
  close(1) 
        open(1,file='RezVan.dat') 
  write(1,5) 
    5 format(2X,'Solution of the equations of the self-oscillating mode'/10X,'Entered data:') 
  write(1,14)A,B,C 
   14 format(2X,' A=',E10.4,' B=',E10.4,' C=',E10.4) 
  write(1,15)EPS1,EPS2,H1,HM 
   15 format(2X,' EPS1=',E10.4, ' EPS2=',E10.4,' H1=',E10.4,' HM=',E10.4) 
  write(1,16)KER 
   16 format(3X,’ KER =’,10i5) 
    Write(1,17)K 
   17 format(2X,' K=',i2) 
  write(1,18)OM 
   18 format(2X,'OM=',E11.4) 
  write(1,19)X1C1,X1S1,X2C1,X2S1 
   19 format(2X,'X1C1=',E11.4,' X1S1=',E11.4,' X2C1=',E11.4,' X2S1=',E11.4) 
     3 format(2X,10I5) 
!-----  занесли введені дані до вихідного файлу 
      call SizesV(KER(1),K,KER(8),NG,NK) 
  write(1,3)NG,NK 
!-----  NG – порядок простого вектора амплітуд 
!-----  NK - порядок складеного вектора амплітуд 
  Y0=0;  Y0(NK+1)=OM 
  Y0(1)=X1C1; Y0(2)=X1S1; Y0(NG+1)=X2C1; Y0(NG+2)=X2S1 
        write(1,13) 
   13 format(/2X,'C a l c u l a t I o n :') 
         call HARMOSC(K,Y0,E,NK,HM,H1,EPS1,EPS2,KER) 
         close(1) 
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         stop 
      end Program Avto 
!------------------------ 
      Subroutine Model(AL,M,K,MK,XC,YC,ZC,YXC,ZXC,BM) 
!--  The procedure of the instantaneous model of the ssystem on half-period  
 Implicit none 
 real::AL 
 integer,intent(in)::M,K,MK 
 real,dimension(MK)::XC,YC,ZC 
 real,dimension(MK,K)::YXC,ZXC 
 real,dimension(K)::X,Z 
 real,dimension(K,K)::ZX,BM 
 real::A,B,C 
 integer::i 
 common/MP/A,B,C   !--  area of memory shared with the main program 
 BM(1,1)=0.;  AL=0. 
 YC(1)=0.;  YXC(1,1)=0. 
 do i=1,M 
    call DRAWOUTV(K,XC,MK,X,i) 
    Z(1)=-X(2) 
    Z(2)=A*(X(1)**2-B**2)*X(2)+C*X(1) 
    ZX(1,1)=0.;    ZX(1,2)=-1. 
    ZX(2,1)=2.*A*X(1)*X(2)+C 
    ZX(2,2)=A*(X(1)**2-B**2) 
    call DRAWUPV(K,Z,ZC,MK,i) 
    call DRAWUPM(K,ZX,ZXC,MK,i) 
 end do 
 return 
 end  Subroutine Model 

 
           As in previous examples A.1 and A.2, formal parameters AL and BM  are not used in the 
MODEL procedure for this example, because the nonlinearity of equation (4.49) is not hysteretic 
(does not belong to the third group) and equation (4.49) in notation (4.55) is in the normal Cauchy 
form (1.65). For the same reason, the first four operators 
              BM(1,1)=0.;  AL=0. 
          YC(1)=0.;    YXC(1,1)=0. 

perform unnecessary operations, their purpose is to block the compiler's message when 
compiling the procedure that the specified formal parameters in the body of the procedure are 
not used. 
           Since there are no nonlinearities of the second or third groups in the problem, all the 
actions of the procedure (calculation of the values of the composite nodal vector ZC and the 
composite matrix of nodal parameters ZXC ) are performed in the main cycle of the procedure. 
          Printout of the RezVan.dat file with the calculation results: 
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   Solution of the equations of the self-oscillating mode 
 
   Entered data:  
   A= .5000E+00  B= .1500E+01  C= .2500E+00 
   EPS1= .1000E-02 EPS2= .1000E-03 H1= .1000E+01 HM= .1000E+01 
  KER =   1    1    0    2    0    0   0   9   0   0 
  K = 2 
  OM=  .4000E+00 
 X1C1=.3300E+01 X1S1= .1000E-01 X2C1= .1000E-01 X2S1= -.2000E+01 
     10    20  
   
  C a l c u l a t i o n : 
    Amplitudes of harmonics of the 1-st variable: 
  X1(c1)=  .3083E+01   X1(s1)=  .0000E+00   X1(1)=  .3083E+01 
    X1(c3)= -.4235E+00   X1(s3)= -.4977E+00   X1(3)=  .6535E+00 
  X1(c5)= -.4779E-01   X1(s5)=  .2488E+00   X1(5)=  .2533E+00 
  X1(c7)=  .1034E+00   X1(s7)= -.5143E-01   X1(7)=  .1155E+00 
  X1(c9)= -.5647E-01   X1(s9)= -.2426E-01   X1(9)=  .6146E-01 
 
    Amplitudes of harmonics of the 2-st variable: 
  X2(c1)= -.5489E-06   X2(s1)= -.1223E+01   X2(1)=  .1223E+01 
  X2(c3)= -.5922E+00   X2(s3)=  .5038E+00   X2(3)=  .7775E+00 
  X2(c5)=  .4934E+00   X2(s5)=  .9476E-01   X2(5)=  .5024E+00 
  X2(c7)= -.1428E+00   X2(s7)= -.2872E+00   X2(7)=  .3207E+00 
  X2(c9)= -.8659E-01   X2(s9)=  .2016E+00   X2(9)=  .2194E+00 
 
  Circular frequency of the fundamental harmonic =  .3966E+00 

     
           Table 4.4 illustrates the dependence of the calculated values of the amplitudes of the 
harmonics of variable   1x  and circular frequency    ω   oscillations on the number of harmonics 
taken into account. 
                
                                    Table 4.4. Calculation results for equation (4.49) 
                

  n )1(1X  )3(1X  )5(1X  )7(1X  )9(1X  ω  

1                 3.0     0.5 
3 3.120 0.7281    0.4206 
5 3.085 0.6782 0.3042   0.3970 
7 3.082 0.6549 0.2601 0.1328  0.3966 
9 3.083 0.6535 0.2533 0.1155 0.0615     0.3966     

 
           As you can see, it is enough to take into account harmonics up to and including the 
seventh in the calculation. At the same time, the obtained amplitude and frequency values differ 
from values (4.54) by 2.6% and 20.7%, respectively. The time dependence of the variable 
contains sufficiently pronounced higher harmonics: the third (24%) and the fifth (8.3%). 
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4.2.4.  Example  А .4 
             In this section, we present the results of simulation of oscillations of a pendulum with a 
pushing force under viscous damping, which are described by the equation 
 
                                  xhxsignfxx  2)(2

0 −=+ω .                                          (4.58) 
 
Here, the pushing force is a kind of negative dry friction: when the speed is positive, the pushing 
force is also constant and positive; when the speed is negative, then it is also constant and 
negative. 
          In [56], taking 
                                                )sin( 0 ϕω += tax ,                                             (4.59) 
 
solved this problem by the averaging method (here it is - example 4.3.3) and got  

                                                    
0

2
ωπ h
fa = .                                                         (4.60) 

Having asked 
                               0.1;455.0;9.0 0 === ωhf ,                                      (4.61) 
 
by formula  (4.60)  we have 
                                                        259.1=a .                                                     (4.62) 
 
           Now let's calculate this nonlinear oscillation by means of numerical modeling using 
DGM software. For this purpose, we reduce equation (4.58) to the form (1.65)  
 

                                                        0=−+ ez
dt
xd 



,                                                 (4.63) 
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           The expression for the derivative  xdzd  , which is necessary for constructing an 
instantaneous (on half-period) mathematical model of the process, has the form 
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 .                                                    (4.65)                                    

The block of user program components for this case consists of the main Program 
Majatnyk program and the Model procedure (instant model on the half-period), which have the 
form: 
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       Program Majatnyk 
!---  Calculation of pendulum oscillations with a force that pushes 
!--     dX/dt+Z=E 
!--     X=colon(x1,x2) 
!--     Z=colon(z1,z2) 
!--     E=colon(e1,e2) 
!--     z1=-x2;    z2=C*x1+2*h*x2-f*sign(x2) 
!--     e1=0;  e2=0 
!--  (variables contain only odd harmonics) 
!----------------------------------------- 
  Implicit none 
  real,dimension(42)::Y0 
  real,dimension(40)::E 
  integer,dimension(10)::KER 
  real::C,H,F,OM,A,EPS1,EPS2,H1,HM 
  real::X1C1,X1S1,X2C1,X2S1 
  integer::K,NG,NK 
  common/MP/C,H,F     !--- area of memory shared with the Model procedure 
             open(1,File='DaniVan.dat',status='old') 
  Read(1,1)C,H,F 
  Read(1,1)EPS1,EPS2,H1,HM 
  Read(1,2)KER 
     Read(1,2)K 
    1 Format(4E10.4) 
    2 Format(10I3) 
  Close(1) 
        open(1,file='RezVan.dat') 
  write(1,5) 
    5 format(2X,'Calculation of pendulum oscillations ' /10X,'Entered data:') 
  write(1,14)C,H,F 
   14 format(2X,' C=',E10.4,' H=',E10.4,' F=',E10.4) 
  write(1,15)EPS1,EPS2,H1,HM 
   15 format(2X,' EPS1=',E10.4,' EPS2=',E10.4,' H1=',E10.4,' HM=',E10.4) 
  write(1,3)KER 
    write(1,17)K 
   17 format(2X,' K=',i2) 
  OM=sqrt(C);  A=2.*F/(3.14159*H*OM)    !--- formula (4.60) 
  write(1,18)OM,A 
   18 format(2X,'OM=',E11.4,'  A=',E11.4) 
  X1C1=A; X1S1=0.; X2C1=0.; X2S1=-A*OM 
!--- X1C1,X1S1,X2C1,X2S1 – initial values of the amplitudes of the  
!---                                            first harmonics of variables 
  write(1,19)X1C1,X1S1,X2C1,X2S1 
   19 format(2X,'X1C1=',E11.4,' X1S1=',E11.4,' X2C1=',E11.4,' X2S1=',E11.4) 
    3 Format(2X,8I5) 
      call SizesV(KER(1),K,KER(8),NG,NK) 
  Write(1,3)NG,NK 
!-----  NG – the order of a simple vector of amplitudes  
!-----  NK - the order of the composite vector of amplitudes 
  Y0=0;  Y0(NK+1)=OM 
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  Y0(1)=X1C1; Y0(2)=X1S1; Y0(NG+1)=X2C1; Y0(NG+2)=X2S1 
        write(1,13) 
   13 format(/2X,'C a l c u l a t I o n :') 
        call HARMOSC(K,Y0,E,NK,HM,H1,EPS1,EPS2,KER) 
        close(1) 
        stop 
        end Program Majatnyk 
!--------------------------- 
      Subroutine Model(AL,M,K,MK,XC,YC,ZC,YXC,ZXC,BM) 
!--  Instant model of the process (at half period) 
  Implicit none 
  real::AL 
  integer,intent(in)::M,K,MK 
  real,dimension(MK)::XC,YC,ZC 
  real,dimension(MK,K)::YXC,ZXC 
  real,dimension(K)::X,Z 
  real,dimension(K,K)::ZX,BM 
  real::C,H,F 
  integer::i 
  Common/MP/C,H,F   !--  A shared area of memory with the main program 
  BM(1,1)=0.;  AL=0. 
  YC(1)=0.;  YXC(1,1)=0. 
  do i=1,M 
     call DRAWOUTV(K,XC,MK,X,i) 
     Z(1)=-X(2) 
     Z(2)=C*X(1)+2.*H*X(2)-sign(F,X(2)) 
     ZX(1,1)=0.;   ZX(1,2)=-1. 
          ZX(2,1)=C;    ZX(2,2)=2.*H 
     call DRAWUPV(K,Z,ZC,MK,i) 
     call DRAWUPM(K,ZX,ZXC,MK,i) 
  end do 
  return 
  end  Subroutine Model 

   
And in this example, as in several previous ones, the formal parameters AL and BM are 

not used in the Model procedure, because the nonlinearity of equation (4.58) is not hysteretic 
(does not belong to the third group) and equation (4.58) in the notation (4.63) is in the normal 
Cauchy form (1.65). For the same reason, the first four operators 
              BM(1,1)=0.;  AL=0. 
          YC(1)=0.;  YXC(1,1)=0. 

are performing unnecessary operations, their purpose is to block the compiler's message when 
compiling the procedure that the specified formal parameters in the body of the procedure are 
not used. 

Since there are no nonlinearities of the second or third groups in the problem, the values 
of the composite nodal vector ZC and the composite matrix of nodal parameters ZXC are 
performed in the main cycle of the procedure. 
            Printout of the RezVan.dat source file with the calculation results: 
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   Calculation of pendulum oscillations 
   Entered data: 
   C= .1000E+01 H= .4550E+00 F= .9000E+00 
   EPS1= .1000E-02 EPS2= .1000E-03 H1= .1000E+01 HM= .1000E+01 
   KER =   1    1    0    2    0    0     0   7   0   0 
   K = 2 
  OM=  .1000E+01  A=  .1259E+01 
X1C1= .1259E+01 X1S1= .0000E+00 X2C1= .0000E+00  X2S1=-.1259E+01 
      8     16  
   C a l c u l a t i o n : 
  Amplitudes of harmonics of the 1-st variable: 
  X1(c1)=  .1340E+01    X1(s1)=  .7881E-14    X1(1)=  .1340E+01 
  X1(c3)= -.6973E-02    X1(s3)=  .5264E-01    X1(3)=  .5310E-01 
  X1(c5)= -.6343E-02    X1(s5)=  .8976E-02    X1(5)=  .1099E-01 
  X1(c7)= -.3347E-02    X1(s7)=  .2136E-02    X1(7)=  .3971E-02 
 
  Amplitudes of harmonics of the 2-st variable:    
  X2(c1)=  .3444E-06   X2(s1)= -.1243E+01    X2(1)=  .1243E+01 
  X2(c3)=  .1465E+00   X2(s3)=  .1941E-01    X2(3)=  .1478E+00 
  X2(c5)=  .4163E-01   X2(s5)=  .2942E-01    X2(5)=  .5098E-01 
  X2(c7)=  .1387E-01   X2(s7)=  .2174E-01    X2(7)=  .2578E-01 
 
  Circular frequency of the fundamental harmonic =  .9277E+00 

 
           The results of solving this problem, depending on the value  n , are shown in Table 4.5. 

 
                      Table 4.5. Calculation results for equation (4.58) 
 

n  
1a  3a  5a  7a    ω  

1 1.296    0.9706 
3 1.296 0.048   0.9706 
5 1.326 0.051 0.011  0.9419 
7 1.340 0.053 0.011 0.004 0.9277 

 
 

 Let's modify the problem discussed above - instead of viscous damping, we will install 
damping that creates  a  gas medium: let the resistance force be proportional to the product 

xx   . For this case, the oscillation of the pendulum with the pushing force is described by the 
equation 
                                        xxxsignfxx  αω −=+ )(2

0 .                               (4.66) 
Taking what 
                                                  )sin( 0 ϕω += tax  ,                                        (4.67) 
 
by averaging we get  

                                                  
02

3
αω

fa =   .                                                   (4.68) 
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Having accepted the value 
                                           0.1;3.1;9.0 0 === ωαf ,                          (4.69) 
we have  
                                                         019.1=a  .                                                  (4.70) 
 

Now let's calculate this nonlinear oscillation by numerical simulation using DHM-S. For 
this, equation (1) is reduced to the form   

                                                       0=−+ ez
dt
xd 
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,                                             (4.71) 
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The expression for the derivative  xdzd    required for constructing an instantaneous 
mathematical model of the process at the half-period  has the form  
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         The block of user program components for this case consists of the Main program  
Program Majat1  and the  MODEL  procedure of the instantaneous process model (on a half-
cycle), which have the form: 

 
      Program Majat1 
!-- Calculation of pendulum oscillations in a gaseous environment 
!--     dX/dt+Z=E 
!--     X=colon(x1,x2) 
!--     Z=colon(z1,z2) 
!--     E=colon(e1,e2) 
!-    z1=-x2;   
!--     z2=C*x1+h*x2*abs(x2)-f*sign(x2) 
!--     e1=0;  e2=0 
!--  (variables contain only odd harmonics ) 
!----------------------------------------- 
  Implicit none 
  real,dimension(42)::Y 
  real,dimension(40)::E 
  integer,dimension(10)::KER 
  real::C,H,F,OM,A,EPS1,EPS2,H1,HM 
  real::X1C1,X1S1,X2C1,X2S1 



183 
 

  integer::K,NG,NK 
  common/MP/C,H,F    !--- area of memory shared with the Model procedure 
                 open(1,File='DaniMaj.dat',status='old') 
  read(1,*)C,H,F 
  read(1,*)EPS1,EPS2,H1,HM 
  read(1,*)KER 
     read(1,*)K 
  close(1) 
                 open(1,file='RezMaj.dat') 
  write(1,5) 
    5 format(2X,'Calculation of pendulum oscillations in gas' /10X,'Entered data:') 
  write(1,14)C,H,F 
   14 format(2X,' C=',E10.4,' H=',E10.4,' F=',E10.4) 
  write(1,15)EPS1,EPS2,H1,HM 
   15 format(2X,' EPS1=',E10.4,' EPS2=',E10.4,' H1=',E10.4,' HM=',E10.4) 
  write(1,16)KER 
   16 format(2X,' KER =',10i5) 
    Write(1,17)K 
   17 format(2X,' K=',i2) 
  OM=sqrt(C);  A=sqrt(3.*F/(2.*H*OM**2)) 
  write(1,18)OM,A 
   18 format(2X,'OM=',E11.4,'  A=',E11.4) 
  X1C1=A; X1S1=0.; X2C1=0.; X2S1=-A*OM 
!--- X1C1,X1S1,X2C1,X2S1 – initial values of the amplitudes of the  
!---                                            first harmonics of variables 
  write(1,19)X1C1,X1S1,X2C1,X2S1 
   19 format(2X,'X1C1=',E11.4,' X1S1=',E11.4,' X2C1=',E11.4,' X2S1=',E11.4) 
      call SizesV(KER(1),K,KER(8),NG,NK) 
   write(1,20)NG,NK 
   20 format(2X,'NG=',i3,'  NK=',i3) 
  Y=0;  Y(NK+1)=OM 
  Y(1)=X1C1; Y(2)=X1S1; Y(NG+1)=X2C1; Y(NG+2)=X2S1 
        write(1,21) 
   21 format(/2X,'C a l c u l a t I o n :') 
        call HARMOSC(K,Y,E,NK,HM,H1,EPS1,EPS2,KER) 
        close(1) 
        stop 
        end Program Majat1 
!---------------------------------------------------- 
 
      Subroutine Model(AL,M,K,MK,XC,YC,ZC,YXC,ZXC,BM) 
!  Процедура миттєвої моделі процесу на півперіоді 
!------------------- 
  Implicit none 
  real::AL 



184 
 

  integer,intent(in)::M,K,MK 
  real,dimension(MK)::XC,YC,ZC 
  real,dimension(MK,K)::YXC,ZXC 
  real,dimension(K)::X,Z 
  real,dimension(K,K)::ZX,BM 
  real::C,H,F 
  integer::i 
 common/MP/C,H,F   !--  A shared area of memory with the main program 
   BM(1,1)=0.;  AL=0. 
   YC(1)=0.;  YXC(1,1)=0. 
   do i=1,M 
     call DRAWOUTV(K,XC,MK,X,i) 
     Z(1)=-X(2) 
     Z(2)=C*X(1)+H*X(2)*abs(X(2))-sign(F,X(2)) 
     ZX(1,1)=0. 
     ZX(1,2)=-1. 
     ZX(2,1)=C 
     ZX(2,2)=2*H*abs(X(2)) 
     call DRAWUPV(K,Z,ZC,MK,i) 
     call DRAWUPM(K,ZX,ZXC,MK,i) 
   end do 
   return 
   end Subroutine Model 
 

 
Printout of the source file RezMaj.dat with the calculation results: 
 

   Calculation of pendulum oscillations in gas 
 
        Entered data: 
   C= .1000E+01 H= .1300E+01 F= .9000E+00 
   EPS1= .1000E-02 EPS2= .1000E-03 H1= .1000E+01 HM= .1000E+01 
   KER =  1    1    0    2    0    0    0    5    9    1 
   K= 2 
OM = .1000E+01   A = .1019E+01 
X1C1= .1019E+01 X1S1= .0000E+00 X2C1= .0000E+00 X2S1= -.1019E+01 
      6   11   12   36 
 
  C a l c u l a t i o n : 
 
          The h-characteristic is calculating 
     ---------------------------------------- 
     Refined value 1 root at h= 1.000 
  (the solution was obtained after the 4-rd iteration) 
 
  Amplitudes of harmonics of the 1-st variable: 
  X1(c1)=  .1216E+01  X1(s1)= -.6529E-12  X1(1)= .1216E+01 
  X1(c3)=  .1452E-01  X1(s3)=  .8249E-01  X1(3)= .8376E-01 
  X1(c5)= -.1268E-01  X1(s5)=  .1592E-01  X1(5)= .2035E-01 
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  Amplitudes of harmonics of the 2-st variable: 
  X2(c1)=  .4739E-06  X2(s1)= -.9979E+00  X2(1)=  .9979E+00 
  X2(c3)=  .2031E+00  X2(s3)= -.3574E-01  X2(3)=  .2062E+00 
  X2(c5)=  .6532E-01  X2(s5)=  .5202E-01  X2(5)=  .8350E-01 
 
  Circular frequency of the fundamental harmonic =  .8207E+00 
 
         The results of solving this problem, depending on the value  n , are shown in Table 4.6.  
 
               Table 4.6. Calculation results for equation (4.66) 
 

n  
1a  3a  5a  7a  ω  

1 1.057    0.9639 
3 1.197 0.084   0.8398 
5 1.216 0.084 0.020  0.8207 
7 1.223 0.084 0.020 0.007 0.8134 

 
 

4.3.   Example of calculating of parametric oscillations   
 

Consider, as an example, the calculation of parametric oscillation in an electric circuit 
given in [39]. There, a simple electric circuit is considered, formed by series-connected 
inductance  L , nonlinear active resistance   r , the value of which, depending on the circuit 
current, is determined by the formula  
                                                   )1( 2

00 iRr β+= ,                                                    (4.74) 
 
here  0R  and  0β  - constant values, and with a variable capacity C , the value of which is a 
periodic function of time and is determined by the formula    

                                                    
tm

CC
ω2cos1

0

+
= ,                                              (4.75) 

 
here   0C ,  m ,   ω  - constant values.  

To calculate the amplitude of current fluctuations in this circuit (in other words, the 
amplitude of the alternating current) in [39], the method of slowly changing amplitudes was used. 
It is assumed that due to the generation of parametric oscillations, the current in the circuit 
changes harmonically with the frequency  ω   according to the expression                         
                                                    tItIi sc ωω sincos += .                                 (4.76) 
 
Taking into account that the circuit is an oscillating system with low dissipation, neglecting the 
terms of the second order of smallness in the equations describing the circuit and averaging the 
values of the circuit parameters over the oscillation period, in [39] the so-called shortened 
equations were obtained, in which the signs of the derivatives are amplitudes  cI  and sI .  An 
expression for the current amplitude is obtained from the stationary solution of these equations 
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here 
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Formulas (4.74)–(4.78) use the same notation as in paragraph 4.5 of the source [39]. 
Given   numerical  values  of  =L  0.025 Hn; =0R  0.09 ohms;  =0β 0.1 2/1 A ;  =0C

0.004 F; =m  0.13; =ω   100 1/s, by formulas (4.77) and (4.78) we get   0=ξ   3.277 and   
=I  3,277 A. 

We will solve the same problem by means of numerical polyharmonic modeling using 
DHM-S. 

The equations describing the electrical circuit under consideration, in the form of entry 
(1.64), have the form 

                                                       0=−+ ez
dt
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  cu  - capacitor voltsge;     
                                                             iL=φ                                                       (4.81) 

- flux coupling of the inductive element of the circuit. 
The derivatives    xdyd     and    xdzd  are as follows 
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 .              (4.82а,б) 

The text of the main program and the Model  procedure from the block of user software 
components: 

      PROGRAM ParamOscil  
!--  A program for calculating parametric oscillations 
!-- in an electric circuit with elements: 
!-- periodically variable electrical capacity, 
!-- nonlinear active resistance and nonlinear inductance 
!------------------------- 
  Implicit none 
  real,dimension(22)::X 
  real,dimension(20)::E 
  integer,dimension(10)::KER 
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  real::OM,EPS1,EPS2,H1,HM 
  real::R0,BET0,C0,AM,ST1,DST 
  real,dimension(8)::PT 
  real::CI1,CI2,CU1,CU2 
  integer::K,NG,NK,NT,i 
  common/MP/R0,BET0,C0,AM,NT,ST1,DST,PT 
              open(1,File='DaniV.dat',status='old') 
  read(1,1)OM,EPS1,EPS2,H1,HM 
  read(1,1)R0,BET0,C0,AM 
  read(1,2)NT 
  read(1,1)ST1,DST 
   read(1,1) (PT(i),i=1,NT) 
              read(1,2)KER 
  read(1,2)K 
  read(1,1)CI1,CI2,CU1,CU2 
!------ CI1,CI2,CU1,CU2 – initial values of the amplitudes of the  
!---                                        first harmonics of variables 
    1 format(5E10.4) 
    2 format(10I3) 
  close(1) 
        open(1,FILE='RezV.DAT') 
        write(1,10) 
   10 format(/5X, 'Incoming data :'/) 
         write(1,4)OM,EPS1,EPS2,H1,HM 
  write(1,4)R0,BET0,C0,AM 
  write(1,3)NT 
  write(1,4)ST1,DST 
  write(1,4) (PT(i),i=1,NT) 
              write(1,11)KER 
   11 format(2X.’KER = ‘,10i5) 
  write(1,12)K 
   12 format(2X,’K = ‘,i5) 
  write(1,4)CI1,CI2,CU1,CU2       
    3 format(1X,10I5) 
    4 format(1X,5E11.4) 
  write(1,20) 
   20 format(/5X,'T h e   r e s u l t s :'/) 
      call SizesV(KER(1),K,KER(8),NG,NK) 
  write(1,3)NG,NK 
  X=0.;  X(1)=CI1;    X(2)=CI2; 
         X(NG+1)=CU1; X(NG+2)=CU2;   X(NK+1)=OM 
  call HARMOSC(K,X,E,NK,HM,H1,EPS1,EPS2,KER) 
  close(1) 
      stop 
      end Program  ParamOscil 
!--------------------------- 
       Subroutine Model(AL,M,K,MK,XC,YC,ZC,YXC,ZXC,BM) 
!--   The subroutine implements the instantaneous model on a half-period: 
!--   for the value of the composite nodal vector XC 
!--  determines the value of the composite nodal vectors YC,ZC 
!--   and  matrices YXC and ZXC of derivatives 
!--- AL - hysteresis loop narrowing factor (not used) 
!--- M is the number of nodes per half cycle 
!--- K is the order of the system of differential equations 
!--- MK=M*K 
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!--- BM - matrix of coefficients (not used)  
!------------------------ 
  Implicit none 
  real::AL 
  integer,intent(in)::M,K,MK 
  real, dimension(MK)::XC,YC,ZC 
  real,dimension(MK,K)::YXC,ZXC 
  real,dimension(K)::X,Y,Z 
  real,dimension(K,K)::YX,ZX,BM 
  integer::i,NT 
  real::R0,BET0,C0,AM,ST1,DST,LD,ET,AI 
  real,dimension(8)::PT 
  common/MP/R0,BET0,C0,AM,NT,ST1,DST,PT 
  BM(1,1)=0.; AL=0.   
  do i=1,M 
     call DRAWOUTV(K,XC,MK,X,i) 
     AI=i-1; ET=3.1416*AI/M   !--- angular coordinate of the node  
     call INTLIN(X(1),Y(1),LD,ST1,DST,PT,NT) 
     Y(2)=X(2) 
     Z(1)=R0*X(1)+R0*BET0*X(1)**3+X(2) 
     Z(2)=-X(1)*(1.+AM*cos(2.*ET))/C0 
     YX(1,1)=LD 
     YX(1,2)=0. 
     YX(2,1)=0. 
     YX(2,2)=1. 
     ZX(1,1)=R0+3.*R0*BET0*X(1)**2 
     ZX(1,2)=1. 
     ZX(2,1)=-(1.+AM*cos(2.*ET))/C0 
     ZX(2,2)=0. 
     call DRAWUPV(K,Y,YC,MK,i) 
     call DRAWUPV(K,Z,ZC,MK,i) 
     call DRAWUPM(K,YX,YXC,MK,i) 
     call DRAWUPM(K,ZX,ZXC,MK,i) 
  end do 
    return 
  end subroutine Model 
 

Although in this problem the inductance  L  of the electric circuit is set constant, in the 
main program it is provided that it can also be variable - a function of the current, and it is 
provided to set values for the variables ST1, DST, PT, NT, which set the tabular curve of 
magnetization of the inductive element (ST1 is the value of the current at which the initial linear 
part of the magnetization curve ends; DST is the step of the table; PT is the table specifying the 
value of flux coupling in the nodes of the table; NT is the number of nodes of the table), and then 
instead of (4.81) we have 

                                                         ][iφφ = .                                             (4.83) 
The value  L  in formula (4.82a) is calculated as 
                                                               didL φ= .                                               (4.84) 
           To determine the values  φ   and  L  and in the Model  procedure, the  INTLIN  procedure 
from Block 4 of the DHM-S (see section 2.2.4.2) is called for execution, which performs linear 
interpolation from the  PT  table. 
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          According to the described program, calculations were performed for the case of constant 
inductance, the magnetization curve is presented as a straight line, the tangent of the angle of 
inclination of which is equal to  L =0.025 Hn, and this straight line is presented by  table with 
three nodes. 
          The calculation results (only the first harmonic is taken into account) are as follows: 
 
     Incoming data: 
   .1000E+03  .1000E-01  .3000E-02  .1000E+01  .1000E+01 
   .9000E-01  .1000E+00  .4000E-02  .1300E+00 
     3 
   .1000E+01  .5000E+00 
   .2500E-01  .3750E-01  .5000E-01 
     KER = 1    0    0    1    0    0    0    1    0    0 
     K = 2 
   .1500E+01 -.1500E+01  .3000E+01  .4000E+01 
 
     T h e    r e s u l t s : 
     2    4 
   Number of the highest harmonic =  1 
   The initial value of the vector of amplitudes : 
      .1500E+01  -.1500E+01   .3000E+01   .4000E+01 
      .1000E+03   .0000E+00 
   Inconsistencies for the initial value of the vector of 
amplitudes: 
     -.5694E+00   .6944E-01   .6253E+00   .5063E+02 
      .0000E+00   .0000E+00 
     ---------------------------------------- 
     Refined value 1 root at h= 1.000 
  (the solution was obtained after the 2-rd iteration) 
 
  Amplitudes of harmonics of the 1-st variable: 
  X1(c1)=  .2317E+01  X1(s1)= -.2317E+01  X1(1)=  .3277E+01 
 
  Amplitudes of harmonics of the 2-st variable: 
  X2(c1)=  .5417E+01  X2(s1)=  .6170E+01  X2(1)=  .8211E+01 

 
Here it is necessary to pay attention that in the input data the 4th element of the KER 

array is given the value 1, thereby specifying that the simulated oscillation is parametric. 
The above calculation results show that the obtained value of the amplitude of the 1st 

harmonic of the loop current is equal to 3.277 A, and this coincides with the accuracy of the third 
sign with the results of the analytical calculation by the method of slowly changing amplitudes 
using shortened differential equations. This confirms the theoretical correctness of using the 
method of slowly varying amplitudes to solve this problem with the replacement of the differential 
equations describing the processes in the circuit with shortened equations: the results of the 
calculation based on the shortened equations are the same as the numerical solution of the full 
differential equations without them simplifications and neglect by individual members. 

Repeating the same calculations, but taking into account the 3rd, 5th and 7th harmonics 
in addition to the 1st harmonic, it was obtained that the 3rd harmonic of the current is 0.4%, the 
5th and 7th harmonics of the current practically zero. The practical absence of variable higher 
harmonics in time dependences is explained as follows. In this problem, the generation of higher 
harmonics can only be carried out by an active resistance, because it is nonlinear, but, given 
that the voltage drop on it at the given input data is much smaller than the voltage drops on the 
capacitor and inductance, therefore, the higher harmonics of the current generated by its 
nonlinearity and voltages are negligible. 
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Let's complicate the task. Let the inductance also be nonlinear and the dependence of 
flux coupling on the current (magnetization curve, similar to Fig. 4.2) given by the table. Its initial 
part is linear, and it determines the same inductance (0.025 H) as in the case considered above. 
After the loop current reaches a value of 1.0 A, the nonlinear part of the magnetization curve 
begins. 

The calculation results in this case, taking into account harmonics up to and including 
the 7th, are as follows: 
 
     Incoming data: 
   .1000E+03  .1000E-01  .3000E-02  .1000E+01  .1000E+01 
   .9000E-01  .1000E+00  .4000E-02  .1300E+00 
     8 
   .1000E+01  .2500E+00 
   .2500E-01  .2830E-01  .3120E-01  .3320E-01  .3450E-01 
   .3550E-01  .3620E-01  .3670E-01 
     1    0    0    1    0    0    0    7    0    0 
     2 
   .1500E+01 -.1500E+01  .3000E+01  .4000E+01 
     T h e    r e s u l t s : 
     8   16 
      Number of the highest harmonic =  7 
   The initial value of the vector of amplitudes : 
      .1500E+01  -.1500E+01   .0000E+00   .0000E+00 
      .0000E+00   .0000E+00   .0000E+00   .0000E+00 
      .3000E+01   .4000E+01   .0000E+00   .0000E+00 
      .0000E+00   .0000E+00   .0000E+00   .0000E+00 
      .1000E+03   .0000E+00 
   Inconsistencies for the initial value of the vector of 
amplitudes: 
      .3870E+00   .1026E+01   .1067E+01  -.1098E+01 
      .1689E+00   .1690E+00   .1288E+00  -.1287E+00 
      .6253E+00   .5063E+02  -.2437E+02   .2438E+02 
      .9936E-03   .1982E-02   .1569E-02   .3033E-02 
      .0000E+00   .0000E+00 
     Refined value 1 root at h= 1.000 
  (the solution was obtained after the 2-rd iteration) 
  Amplitudes of harmonics of the 1-st variable:  
  X1(c1)=  .4170E+00  X1(s1)= -.1150E+01  X1(1)=  .1223E+01 
  X1(c3)= -.4553E-01  X1(s3)=  .1917E-01  X1(3)=  .4940E-01 
  X1(c5)=  .3108E-01  X1(s5)=  .6536E-02  X1(5)=  .3176E-01 
  X1(c7)= -.7244E-02  X1(s7)= -.9633E-02  X1(7)=  .1205E-01 
 
  Amplitudes of harmonics of the 2-st variable: 
  X2(c1)=  .2685E+01  X2(s1)=  .1103E+01   X2(1)=  .2902E+01 
  X2(c3)=  .4596E-01  X2(s3)= -.1367E-01   X2(3)=  .4795E-01 
  X2(c5)= -.3574R-02  X2(s5)=  .1383E-01   X2(5)=  .1428E-01 
  X2(c7)=   .3293E-02  X2(s7)= -.1867E-02  X2(7)=  .3785E-02 

 
As you can see, the calculation results are significantly different from the previous case, 

when the inductance is constant: 1st harmonic current = 1.223 A (it differs by 2.68 times!). 
Noticeable values of higher harmonics: 3rd – 4%, 5th – 2.6% and 7th – 0.9%. 

In this case, the maximum values of the loop current, and, therefore, the amplitude of 
the first harmonic of the current are significantly limited by the nonlinearity (saturation) of the 
inductance. 

The method of slowly changing amplitudes is no longer suitable for solving this problem 
with a nonlinear inductance. 
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                                                     Afterword  
 
Examples of numerical modeling of nonlinear oscillations, considered in the last chapter 

of this book, are simple: with a small number of variables (no more than three), with nonlinearities 
that are functions of only one variable, etc. The selection of simple examples was determined 
by the author's efforts to focus the reader's attention on ways of using the proposed method and 
its software. It is advisable to undertake modeling of nonlinear oscillations in more complex 
systems only after thoroughly mastering the method itself and its software. 

Having worked through this book, the user is already able to tackle such more complex 
tasks. And here, the main focus should be on the development of an instantaneous (period or 
half-period) model of the system process with the most detailed consideration of nonlinearities. 

Many problems for calculating periodic processes in such complex objects as electric 
machines (synchronous, asynchronous, direct current) were solved by the method described in 
the book, taking into account their nonlinearities, in particular, the saturation of the magnetic 
circuit, the presence of semiconductor windings in their circuits and others nonlinear elements, 
when considering instantaneous models of electric machines both from the standpoint of the 
theory of electric circuits and from the standpoint of the theory of the electromagnetic field [9, 11 
– 19, 21 – 26]. And the experience gained in solving these problems can be used in the 
development of models of nonlinear oscillations in objects of a different physical nature - 
mechanical, acoustic, radio-electronic, etc. 

This book does not consider some additional possibilities of the proposed method, in 
particular, taking into account the symmetry of periodic processes (such symmetry exists, for 
example, in symmetrical multiphase electric circuits), which allows minimizing the number of 
unknown amplitude vectors in the problem. If necessary, the reader can familiarize himself with 
such possibilities in [15, 17, 20]. This also applies to the search for periodic solutions of nonlinear 
systems of differential equations with partial derivatives with periodization in time and one of the 
spatial coordinates (here calculation of the stationary electromagnetic field in massive 
ferromagnetic media [19, 23, 25]).The proposed method and its software do not impose any 
restrictions on the dimension of the problem (the number of variables) and the number of 
harmonics taken into account, the only limitation here is only the performance of the computer 
used - its speed and memory capacity. 

However, the author, promoting his method, would consider it unreasonable to contrast 
it with other methods of calculating (modeling) nonlinear oscillations. This is only an alternative 
that has its own niche in this area. And the most expedient is often the use of not one, but 
several methods in their interaction. Thus, in particular, in several examples given in Chapter 
4, initial approximations of amplitudes of harmonics of oscillations are obtained by analytical 
methods (harmonic linearization, slowly changing amplitudes, asymptotic Bogolyubov-
Mitropolsky, harmonic balance, etc.). 
          The author wishes the reader and user of this book, who decides to use the proposed 
differential harmonic method and its software in their scientific or engineering developments, 
and may even improve them (the author would welcome this), success in solving various 
problems, both simple and complex , in numerical modeling of nonlinear oscillations in systems 
of different physical nature. 
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