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Preface to the translation of the book

The monograph [75], the English translation of which is offered to your attention, was
published in 2008 in Ukrainian. The print run of 500 copies sold out a long time ago. An electronic
copy of this book was exhibited and is exhibited in a number of electronic libraries: at National
University "Kyiv Polytechnic Institute named after I. Sikorskyi", National University “Lviv
Polytechnic”, Zaporizhzhia National University, in the Vernadsky Library, in Z-library, in the
reference database "Ukrainika Naukova", etc.

Analysis of references in scientific articles and dissertations to this book and visits to its
electronic copies in electronic libraries of Ukraine showed that the material presented in the book
is still relevant. The publication of its English translation and its location in electronic libraries
and repositories will make the book, we hope, available to a much wider circle of scientists,
graduate students and students, not only in Ukraine, but also abroad.

Today, Ukraine is on the path of integration into the European space, in particular in the
scientific and technical sphere. The author's desire to participate in this process prompted him
to undertake the work of translating his book into English. The completed translation was edited
by the author.

During the translation, typographical errors and inaccuracies found in the original have
been corrected, and some additions suggested by the author have also been taken into account.



The foreword

One of the sections of the theory of oscillations, which studies the general laws of
oscillatory processes in various systems of different physical nature, is the theory of nonlinear
oscillations - oscillations in systems with nonlinear connections. When modeling processes in
such systems, it is usually necessary to take their nonlinearities into account as fully as possible.

The development of various theories, including and separate sections of the theory of
nonlinear oscillations, was always stimulated by the need to solve specific applied problems in
one or another scientific and technical field. The author of this book worked for a long enough
time on solving the problems of calculating periodic processes in nonlinear electrical engineering
and electromechanics. To calculate nonlinear oscillations in systems and devices of this area,
he developed a special numerical method called differential harmonic. It was based on the
well-known in the theory of oscillations method of harmonic balance and some numerical
methods for solving nonlinear systems of finite (algebraic, transcendental) equations using the
apparatus of differential calculus. The author's two monographs [17, 20] can be considered a
certain summary of this work.

This book is attempt of generalization of the received results and representations of the
developed method together with its software as sufficient universal tool for calculation of
nonlinear oscillations in systems of the different physical nature, not only in area of electrical
engineering.

In terms of its style, this book is an attempt to present the material as a study guide for
senior students and graduate students of technical universities in a wide range of specialties:
electrical engineering, radio physics, electronics, automation, mechanics, acoustics, etc., where
the problems of modeling nonlinear oscillations arise. The author hopes that the book will be
used by specialists in computer calculation and design.

The book also can serve as the manual for development of the special software for
scientific and engineering calculations, in particular - on algorithmic language FORTRAN.

The manuscript of the book was carefully reviewed by the reviewers - employees of the
Lviv Polytechnic National University, Doctor of Technical Sciences, Professor I.V. Kuzyo and
Doctor of Technical Sciences, Professor Malyar V.S. They made a number of suggestions for
improving the presentation of the material, and the author is very grateful to them for this.

The author will be grateful to everyone who will send feedback about this book and,
perhaps, send suggestions and wishes for its improvement to the author's email:
al.lev42@gmail.com
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INTRODUCTION

The generalized coordinates of elements of technical systems of any physical nature
(mechanical, acoustic, hydraulic, electric, radio-electronic, automatic control etc.) can be
considered as variable functions of time. Among those coordinates there are: a) mechanical
linear or angular distance, speed and acceleration; b) electric charge, current and voltage;
c) magnetic intensity, induction, flux, etc. If change of coordinates of system in time is
nonmonotonic they say there is an oscillatory process in this system .

Oscillatory processes in physical systems are either steady-state (stationary) or transitive
processes from some steady-state oscillatory processes to other steady-state processes.
A separate case of stationary oscillatory process is periodic oscillatory process (periodic
oscillation). Periodic oscillation is such oscillation in which dependences of coordinates of the
system of time are periodic functions.

The simplest kind of periodic oscillation is a simple harmonic oscillation (or simply - a
harmonic oscillation)

alt]=A.coswt+ A, sin wt (B.1a)

or
alt]= Acos(wt+ @), (B.1b)

here  a - variable coordinate; 4., A, A - amplitudes of harmonic oscillation of this
coordinate; 7 -time; - circular frequency; @ - initial phase.

Note that in the expressions (B.1), the variable 7 is written in square brackets before
the equal sign and after the variable a. In these expressions (and in other expressions later
in this book), this way of writing means that the variable a is the dependent variable of another
variable ¢ that serves as its argument, that is, it is the independent variable. If a variable
depends on two or more independent variables, they must be separated by commas when
placed in square brackets.

Amplitude and initial phase in expression (B.1b), amplitudes in expression (B.1a) are
connected by the following dependences

A=A+ A2, p=arctg(A,/A,). (B.2)

Dependence of the kind (B.1) is known as a common solution (primitive integral) of the

differential equation
2

d—;+a)2a -0, (B.3)

which describes free oscillations (they also say - natural oscillations) in linear conservative
systems, i.e. without a energy dissipation. For example, it can be: a mechanical vibratory system
- a horizontally located spring fixed at one end and connected with a ball on the other end; a
mechanical mathematical pendulum in the form of a ball hanging on a non-elastic string; an
electric oscillatory circuit made up by an inductance and an electric capacitor, which are
connected in series etc.
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A ball, an element of the system in the first example, is subjected to action of two forces:
the force of inertia

d*x
m—z,
dt

which is product of the weight of the ball 72 and its acceleration (of the second time derivative
of the deviation x of the ball from equilibrium position), and the elastic potential force

F = (B.4)

F,=sx, (B.5)

which is product of rigidity of the spring s and the deviation x. Under the Newton’s

second law the sum of these two forces is equal to zero:
2

}71+F2=md—)2€+sx20. (B.6)
dt
Having designated
xX=a s/m=w’, (B.7)
we come to the equation of the kind (B.3).

In the second example, the inertia force which acts on a ball (the ball has mass m1, the

string has length / , the angle of deviation of the string from vertical position - @, this force is
tangent to the circle described by the ball) is equal to

2
F =mlfl—;29. (B.8)

The potential restoring force, which is tending to return the ball to the state of balance, is
equal to

F,=mgsing, (B.9)
here g is the acceleration of the gravitation.

As in the previous case, if considering that the sum of these two forces according to the
Newton’s second law is equal to zero, and also that at small angles of deviation of the string

from vertical it is possible to accept sin @ = @, and if to designate
O=a; gll=0" (B.10)

again we come to the equatio of the kind (B.3).
In the third example (the electric oscillatory circuit created by a capacitor which has the
charge ¢ and by the inductive coil connected with the flux ¢@) current 7 of the circuit and

voltage . of the caoacitor are connected by means of two equations: the equation written
under the second Kirchgoff law



d¢

—+u, =0 (B.11)
dt
and the equation connecting the values of the current and the charge of the caapacitor
d
49 _;. (B.12)
dt
Suppose the capacitor and the inductive coil of this circuit are electromagnetically linear
¢p=Li; qg=Cu,, (B.13 a,b)

where L - the inductance of the coiland C' - the capacity of the condenser (constants). After
differentiation of the left and the right parts (B.12) with respect to independent variable z we
shall receive

di d’q
—=— B.14
dt dt’ 51
In view of (B.13a) and (B.14)
d di d’
_ﬂ:L_i:L_g. (B.15)
dt dt dt
After insertion in the formula (B.11) the expressions for the derivative ~ d¢@/dt from the
formula (B.15) and the expressions for voltage . from the formula (B.13b) and accepting the
designations
1
- = a)z
LC
we come again to the equation of the kind (B.3).

q=a , (B.16)

It is expedient to note, that in respect of electric circuits the terms "oscillation of stream”,
"oscillation of voltage", etc. as a rule are not used in special literature, and there the terms
"alternating current”, "alternating voltage" are used.

Examples of oscillations which we have considered above, are oscillations in
conservative systems (in systems without dissipation of energy, which are under influence only
of potential forces). Oscillations in such systems are not being attenuated, their amplitudes
depend only on the initial conditions.

In a dissipative system, in which processes are accompanied by dissipation of energy,
the steady oscillations of its coordinates of the kind (B.1) can exist only in the presence of a
periodic external driving force whose work compensates this dissipation of energy.

If dissipation of energy in a system is caused by viscous damping it is necessary to
consider the force of viscous damping which is proportional to the speed, that is the first
derivative of coordinate a.An example of such amortization in mechanical systems is friction
in a hydraulic shock-absorber. The equation of movement in such systems looks like [27]



d’a da 5
+2h—+wa = p[t], B.17
1 7 plt] (B.17)

here / — factor of amortization.

By means of this equation it is possible to describe also change in time of the electric
charge of a condenser in an oscillatory circuit which besides inductance and electric capacity
has also the active resistance 7 connected in series with them and which dissipates energy.
It becomes obvious, if besides designations (B.16) also the designation

r/L=2h (B.18)

is accepted and p[f] considered as alternating electromotive force of an external source.
If in expression (B.17) external driving force p[¢] is a simple harmonious oscillation, in

this case the expression (B.1) is the periodic solution of this differential equation.

Writing down the equation of movement, in the further we shall transform higher order
differential equations to a system of first order differential equations. For example we shall
transform the second order differential equation (B.17) to a system of two first order differential
equations

da db

“——b=0; —+2hb+w’a=p (B.19)
dt dt
also we shall write down this system in a matrix-vector form
dx -
4 z-6 (B.20)
dt
here
- X, a
X = = | (B.21)
x| b
—-b - X
5= = = SR Y (:V7)
Z| (2hb+ow"a 2hx, + w”x,
~ e 0
e = = . (B.23)
e |plt]

In the vector differential equation (B.20) the vector Z s a linear function of vector X
because the differential equation (B.17) is linear :

0 -1
o> 2h

A more complicated case of periodic oscillations is polyharmonic oscillation, that is such
oscillation which can be described presented by the sum of two or more simple harmonic

8
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oscillations of different multiples frequencies. In a common case such oscillation is described
by Fourier series in the form of

alt]=A4, + D (4., cosvwt + A, sinvot) (B.25a)
v=I
or alt]=4,+ > A, cos(vaot+g,). (B.25b)
v=I

In linear systems (in systems in which all connections are expressed by linear
dependences) polyharmonic oscillations are possible only when external driving forces which
cause these oscillations, also are polyharmonic. In this case, the external driving force in
equation (B.19) should be as follows

plt1=PF,+ > (P, cosvawt + P, sinvot), (B.26)
v=1

and then dependences of a kind (B.25) are the periodic decision of the differential equation
(B.20).

It is known that the principle of superposition extends to linear oscillatory systems.
According to this principle the harmonics of oscillatory processes of various orders (with different
values of variable v )are mutually independent, and in expression (B.25), which is a solution
of the equation (B.20), only the amplitudes of those harmonics which are present in driving force
(B.26) differ from zero.

In nonlinear systems, that is systems, what have communications with nonlinear
parameters (or even one communication is nonlinear), periodic oscillations of coordinates are
polyharmonic even then when external driving forces are simple harmonic oscillations as
nonlinearity of system generate the high harmonics. In this case the formula of a kind (B.25)
precisely describe oscillatory process only if 7 =oo (infinity). In practical calculations of
oscillations in nonlinear systems (oscillations in nonlinear systems also are named nonlinear
oscillations among of specialists) value of 7 they aspire to take as possible smaller, but not
smaller from that value at which necessary accuracy of approximation of oscillations is satisfied.

If in the equation of the kind (B.20) dependence of the vector Z  from the vector X
is nonlinear we shall count nonlinear such equation . A subject of consideration in this book in
the further it will be the nonlinear vector differential equations and algorithms of search of their
periodic solutions.

As the nonlinear equation of the kind (B.20) - (B.23) contains driving force p[¢] which

is function only of time, it is non-autonomous equation. Nonlinear oscillations in systems which
are described by such equations, are the forced oscillations.

The equation of the kind (B.20), describing oscillation in some systems, can not contain
driving forces which are functions only time, but time is available among arguments of vector
function Z . Then the equation of movement of system gets the kind

dXx
—+Z[x,t]=0. B.27
77 [X,1] (B.27)



Nonlinear oscillations in systems which are described by the equation of the kind (B.27),
can arise only when there is periodic change of parameters of rigidity, inertia or dissipation of
energy and when there is their certain parity. Such oscillations have name parametrical
oscillations .

If in the equation of the kind (B.27) time among arguments of function Z is absent

ds
dt

this equation is autonomous, and oscillations, as the periodic solution of this equation, are having
name - self-oscillations. Dissipative systems which can have such oscillations, should have
mechanisms of replenishment of energy which is being dissipated during each period of
oscillations.

Not always the differential equations of movement of systems write down so that their
coordinates, dependences of which are determining, are being contained under derivative
signs. In such cases under derivative signs other variables which are functionally connected with
these coordinates write down.

As an example we shall consider the electric nonlinear one-planimetric circuit containing
consistently connected inductance, which linkage ¢ is nonlinear function (owing to saturation

) the current 7 of a circuit

+Z[¥]=0, (B.28)

¢=9[i]; (B.29)

active resistance, whose voltage drop u, is nonlinear function of the circuital current

u, =uli]; (B.30)

capacitance, whose charge ¢ is nonlinear function of the voltage drop z,.  of
capacitance

q=qlu.] (B.31)

and the electromotive force e, and they are periodic functions of time. The differential equation
of the kind (B.20) for this circuit is:

d
& SR+ Z[F]-2[] =0, (B.32)
dt
here
== "], y=|" =H¢; (8.33a, b)
‘x2 uc y2 q
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zZ, u [il+u, u [x ]+ x,

. (B.33¢)

zZ =

Here the vector Z is nonlinear function of a vector X (nonlinear function u,[x,] is

a component of a variable z, ). For more general case the vector ~ Z  can be function also
of vector y:
Z=Z[X,y]. (B.34)

The equations of kinds (B.20) and (B.32) are written down in normal Cauchy form - they
are solved concerning derivatives. More general form of image of the vector differential equation
is the following form

d
B—y+z-¢é=0, B.35
i (B.39)

here B - some constant matrix. If this matrix is identity matrix, image of the equations is
equivalent as image in normal form. On occasion can be y =X, then Z =Z[X], and the

equation becomes as (B.20), (B.27) or (B.28).

Separate rows of a matrix B can be zero, then equation of a kind (B.35 represents
system of the algebraic and differential equations.

Definition of nonlinear oscillations in any system of any physical nature from the point of
view of mathematics is search of the periodic solution (or of periodic solutions) of nonlinear
systems of the differential equations, which describe this system.

In development of methods of calculation and the analysis of nonlinear oscillations
(search of periodic solutions of nonlinear systems of the differential equations describing these
fluctuations) during long time , since the end of 18-th century, were engaged many known
scientists: A. Puankare, A. Lyapunov, Van der Pol, J. Strett, A.Krilov, A.Andronov,
L.Mandelshtam, M. Bogolyubov, J. Mitropolsky, j. Hale, T. Hayasy and others. They have
developed set of the analytical methods, which have enabled to comprehend essence of
nonlinear oscillations.

The beginning of a computer epoch has given a strong push to development of numerical
methods of search of periodic solutions of nonlinear systems of the differential equations. In this
direction, in particular - in the field of nonlinear electrical engineering, it is necessary to note
T.Aprill's and T.Trik's investigations and a significant contribution of the Ukrainian scientists
G.Pukhov, A.Samoylenko, V. Bondarenko, A. Petrenko, L.Sinitskiy, R.Filts, efc.

Consideration of methods of calculation of nonlinear oscillations can be found among
set of monographies and manuals, in particular in [2, 8, 10, 27, 29, 32, 37, 38, 40, 42, 45, 46,
51, 53, 55, 56, 60, 62, 65, 66].
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The methods which are based on Fourier series are take a separate place among
methods of calculation of nonlinear oscillations. The most known among them are: [4-7, 27, 32,
46, 51]. a method of harmonic linearization, a method of small parameter, asymptotic methods
of Krylov and Bogolyubov, a method of harmonic balance. Further we shall briefly
characterize their essence.

In the method of harmonic linearization we accept an assumption: input variables and
output variables for each nonlinear system are monoharmonious (the high harmonics are
neglected). Amplitudes of harmonics of output variables are defined on amplitudes of input
variables by means of formulas for definition of coefficients of Fourier series, thus real nonlinear
relations in system are replaced by linear relations between the first harmonics of input variables
and output variables.

According to a method of small parameter at the solved differential equations allocate
separately nonlinear part from a multiplier, a being small parameter. So, if in the independent
equation of a kind (B.17) the adder instead of constant multiplier 2/ contains nonlinearity

d
F [a,jc;] the equation is led to a kind

2

d—f+5F@+a)2a=0. (B.36)

dt dt
When the parameter & has zero value the oscillatory system corresponding this equation,
becomes linear conservative. The periodic solution for last is accepted as approximation to
which at some nonzero value & search for corrections in the form of series on degrees of this
small parameter. The method can be applied only to quasilinear systems for which the parameter
g issmall.

By means of asymptotic methods of Krylov - Bogolyubov, in particular - of averaging
method (other name - a method of slowly varying amplitudes), periodic solution for quasi linear
systems with small attenuation is searching as monoharmonious fluctuation of a kind (B.1), in
which amplitudes (or amplitudes and phases) are functions slowly varying . The nonlinear
equations which are being solved are being reduced to more simple equations by means of
averaging on the period of values of amplitudes . These equations is called a bridged.

Among above considered methods the method of harmonic balance differs that it can be
applied not only to quasi linear systems, and to essentially nonlinear, and allows to use for
search of dependences of movement of coordinates not only one harmonic, and to search for
the solution in the form of polyharmonious approximation. The essence of a method is
replacement of periodic solutions in the differential equations describing oscillation by Fourier
series. Thus the problem of search of the periodic solution of the differential equations is reduced
to the solution of system of the nonlinear finite equations (i.e. not differential — algebraic,
transcendental), whose unknown variables are amplitudes of harmonics. The methods which
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are based on such approximation, in [27] refer to as frequency methods of obtaining of periodic
solutions.

From the beginning the method of harmonic balance was considered by researchers as
analytical: with its help at the analysis of nonlinear oscillatory systems searched for the analytical
dependences connecting amplitudes of harmonics of variable coordinates with parameters of
system and amplitudes of harmonics of driving forces. It opened opportunities to the analysis of
the found dependences and definition of conditions of existence of fluctuations. However at
reception of such dependences when except for the account of the basic harmonic the task of
the account and the high harmonics is put, it leads to so difficult analytical transformations and
formulas (especially at presence of nonlinearity in the functional dependences, connecting two
and more variable), that they lose "transparency" and practical suitability to the analysis.
Therefore only in rare instances at the analysis of real nonlinear oscillatory systems, except for
the most simple this method is possible to consider even one of the high harmonic together with
the basic harmonic [7].

If the method of harmonic balance is considered numerical, that is, when it is applied in
each specific case, the goal is not to obtain analytical dependences of of amplitudes harmonics
of variable coordinates, but only numerical values of amplitudes, then this avoids complications
when accounting for each next higher harmonic. Such application of a method of harmonic
balance in a combination with some numerical methods of the solution of systems of the
nonlinear algebraic equations was offered by the author of this book to the solution of some
important applied problems in area of nonlinear electrical engineering [9, 11 - 26, 68]. The
offered updating of a method of harmonic balance as of universal numerical method of definition
of periodic solutions of nonlinear systems of the differential equations has been named by
author the differential harmonic method. One of the major tasks at its development was to
achieve high levels of formalization and minimization of volume of a spadework at its application
to calculation of nonlinear fluctuations in each concrete case.

The regular statement of this method and examples of its application will are made in
following chapters of this book.
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Chapter 1

MATHEMATICAL BASES
OF DIFFERENTIAL HARMONIC METHOD

1.1 Harmonic algebraization of the differential equations

Consideration of this question we shall begin with assertion, that the differential harmonic
method begins with a method of harmonic balance.

The first action, which is necessary for use of method of harmonic balance, is
transformation of the differential equations, whose periodic solution is sought, to the algebraic
equations, whose unknown variables are amplitudes of Fourier series approaching the periodic
solution. Such transformation of the differential equations in algebraic we shall name their
harmonic algebraization .

For simplicity of a description of harmonic algebraization and algorithm of search of the
periodic decision we shall consider at first an example of one nonlinear differential equation of
the first order. It is obvious, that it can be only the non-autonomous equation because only the
forced oscillation may be described by differential equation of the first order. We will consider
harmonious algebraization of nonlinear systems of the differential equations, which may be
autonomous or non-autonomous, and also algorithms of search of their periodic decisions only
after that.

Thus, the differential equation is considered

“;—fﬂze, (1.1)
here
e=e[t]=e[t+T] (1.2)

— the set external compelling force (indignation), being 7" -periodic function of time (here T'
- the period);
y=ylx]; (1.3)

z=z[x,y] (1.4)

- some nonlinear functional dependences.
As it has been already noted in introduction, square brackets in this book are applied in
formulas only for record inside of them argument (arguments) of functional dependences (not
at formulas square brackets are traditionally applied to links to references).
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The periodic decision of the nonlinear scalar differential equation (1.1) is oscillation with
the period 7' of coordinate x

x=x[t]=x[t+T], (1.5)

which is argument of nonlinear dependences (1.3), (1.4). Variables ) i z inequation (1.1)
are periodic dependencies of time with the same period :

y=yltl=y[t+T]; (1.6)
z=z[t]=z[t+T] . (1.7)

Let's carry out approximation of dependences (1.2), (1.9) - (1.7) by trigonometrical series

n
alt]=A4,+ X (A4, cosvot+ A, sinvet);
v=I

a=x,y,z,e;, A=X,Y,Z, FE,
here
w=27/T (1.9)

— the basic circular frequency (circular frequency of the first harmonic).
After substitution in (1.1) approximations of dependences of variables y, z and e as

functions of time by series of a kind (1.8) and performance of operation of differentiation is
received transcedental equation
— oY, simot+ oY, coswt —...—voY, sinvot+voY, cosvor —...
.—noY, sinnot+noY cosnwt+Z,+7Z,  cosot+7Z sinwt+...
ot Z, cosvot+Z  simvot+..+Z, cosnot+Z, simnot =
E,+E coswt+E sinwt+..+E, cosvot+E  sinvot+...

.+ E_cosnot+E_sinnot.

(1.10)

The equation (1.10) is satisfied for all values # only in case if
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Z,=FE,;

(Y, +Z,)coswt=E_ coswt;
(—wY,+Z,)sinwt=E_ sinwt,;

(voY, +Z,  )cosvot=E_  cosvwot; (1.11)
(—vwY +Z )sinvot=FE_  sinvot,

(nwY, +Z, )cosnwt=FE, cosnwt;

(—nwY, +Z, )sinnwt=E sinnot.

From (1.11) we receive system of the nonlinear algebraic equations

Z,=E;
a)Ysl +ch = Ecl;
oY, +Z, =E,;

vwY  +Z., =FE

cv >

(1.12)
-voY. +7Z,,6 =E

sV

---------------------------------

noY,+7Z., =E,;

cn

_na)YCVl +ZSI’! = ESI’!

With the purpose of compactness we shall write down system of the equations (1.12) in
the matrix form. For this purpose using coefficients of trigonometrical series (1.8) (constant
components and cosines amplitudes with sines amplitudes), we shall form matrixes-vectors of
kind

XO YO ZO EO

Xcl Ycl ch Ecl

% Xsl e ),Sl — Zsl = Esl
X, = V= Ze =0 En=Y. (143ab,c.0)

en Y, Z en

Xsn sn an ESI’l
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Let's name these matrixes-vectors as vectors of amplitudes. Their size (quantity of elements) is
equal N, =1+4+2n.

Further matrixes-vectors can be designated and so:
A, = colon(4y, A, Ay, ..., A4,,4). (1.13¢)

cl?“slo

Often, even before the calculation of nonlinear oscillations, it can be concluded that in
the coordinates of the analyzed system the amplitudes of harmonics of some orders are always
zero. For example, if in electric circuits nonlinear elements have characteristics of odd type, then
at sinusoidal supply of these circuits currents and voltages of branches do not have constant
components and can have harmonics only of odd orders [41]. In three-phase electrical circuits
connected in a "star" without a neutral conductor, the phase currents cannot have harmonics
whose order is a multiple of 3, and so on. In such cases, at the already selected value 7 , the

size of the amplitude vectors (the number of their elements) decreases due to the removal from
consideration of those amplitudes that are known to be zero.

Amplitude vectors that do not have among their components harmonic amplitudes of
some orders of magnitude smaller than , we will call abbreviated amplitude vectors.

If the coordinates of periodic processes contain only odd harmonics, then for this case
the reduced vectors of amplitudes have the form

A, = colon (A4

cl»

Ay Ag Agyn A, A, (1.14)

s1»

here 71 is an odd number. The size of the amplitude vector (1.14) N, =1+n .

Taking into account the notation (1.13) or (1.14), the system of algebraic equations
(1.12) can be written as:

wDY,. +Z,=E, (1.15)
here
0
0O 1
-1 0
0o 2
D = 20 (1.16)
0 n
—n O

- constant square matrix of order NV g Hereinafter we will call it the differentiation matrix.

If in the equation of the form (1.15) the vectors of amplitudes are reduced, then the
matrix [ is also an abbreviated differentiation matrix. It is obtained from the matrix of the form
(1.16) after removing from it those rows and columns that correspond to the removed
components of the vectors of amplitudes.

If the time dependences of the system coordinates contain only odd harmonics, then
for this case the abbreviated differentiation matrix has the form
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0 1

-1 0
0 3
D = -3 0 (1.17)

0 n

The order of this matrixis N g = 1+n.

The algebraic vector equation (1.15) can be considered as a harmonic
representation of the differential equation (1.1). The transition from (1.1) to (1.15) is a
harmonic algebraization of the differential equation (1.1).

Note that when performing harmonic algebraization of differential equations with
periodic solutions, it is not necessary to perform operations (1.10) - (1.12) each time. This
transformation in order to obtain the already completed form of the algebraic vector equation
of the form (1.14) can be formalized:

1) the variables of the differential equation (in equation (1.1) these are variables
v, z, e) must be replaced by the corresponding amplitude vectors (here are the amplitude

— —

vectors Yr, Z,and E));

2) replace the differentiation operation by multiplying on the left by the circular
frequency @ and matrix D.

Equation (1.15) explicitly includes amplitude vectors Y - and Z ~and implicitly the

— —

amplitude vector X  » which is the root of this equation. Amplitude vectors Y, , Z,. and

—

X | are interrelated. Let's follow this connection.

Assume that the value of the vector X - is known. Then, taking into account (1.8), at

a = x, is also known (approximately) function (1.5). Using it as an argument of nonlinear
functions (1.3) and (1.4), we can obtain the approximation of 7" --periodic dependences (1.6)
and (1.7). The latter can be decomposed into Fourier series of the form (1.8) at a =y and

a = z with the determination of the coefficients of the series by known formulas

27 2r
4, - L [a,dn; A, -2 Ja,cosvnd;
27 T o
. (1.18)
4,, =— [a, sinvndn,
T o

here a,, - value of function @ = a[77] when the value of the angular coordinate 7 = @1.
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Since the vectors of amplitudes Y’ - and Z - are formed from these coefficients by
formulas (1.13) or (1.14), if the values of these coefficients have become known, then the values

— —

of the vectors of amplitudes Y, and Z, have also become known.

As you can see, for each given value of the vector X - you can find the corresponding

—

values of the vectors Y, and Z - Therefore, there are such dependencies

—

Y, =Y. [X.); Z,=Z,.[X,] (1.19a, b)

Let's call these dependences harmonic characteristics. They can be considered as
harmonic mappings of functions (1.3) and (1.4).

Harmonic characteristics (1.19) are nonlinear due to the nonlinearity of dependences
(1.3) and (1.4).

The algorithm for calculating the harmonic characteristics (1.19) is described here
schematically, it is considered in more detail below.

The procedure of harmonic algebraization is considered above on the example of the
differential equation of the form (1.1), in which the sign of the derivative is not a coordinate x,
the periodic dependence of time (1.5) of which is the solution of this equation, but a variable y

, that is a function of the variable x. This notation of the differential equation is more general, it
occurs, for example, in the analysis of electric circuits, when in the differential equations that
describe them, there are derivatives of time not currents, but flux couplings, which are functions
of these currents. If in the differential equation the intermediate variable is absent and under the
sign of the derivative there is a direct variable, the periodic dependence of which is the sought
solution, the differential equation has the form

@+ z[x]=e][t], (1.20)
dt

then its harmonic reflection is a finite equation of the form

woDX, +Z,.=E, . (1.21)

1.2 Determining the periodic solution

After performing harmonic algebraization of the differential equation (1.1) or (1.20),
the determination of their periodic solutions is reduced to the solution of nonlinear vector finite
equations (1.15) or (1.21). Consider first the solution of equation (1.15).

Although the amplitude vector in equation (1.15) does not explicitly appear, it is the root
of this equation. To find it, we use one of the most effective numerical methods for solving
nonlinear algebraic (finite) equations - Newton's iterative method [44, 48]. It is characterized by
a fairly high - quadratic - rate of convergence. However, to ensure the very convergence in its
application, it is necessary to set, as is known, a "good" zero approximation, which is located
within the so-called area of attraction of the root.
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To obtain such a "good" approximation, we will use the method proposed in [64], called
the /& -characteristic method. According to the /% -characteristic method, multiply in equation
(1.15) the vector of forcing forces by a scalar parameter A and obtain a new equation

oDY +Z =hE, .. (1.22)

At h=0 in(1.22) there is no forcing force, and then this vector equation has a trivial
(ie - zero) solution X - =0 . At A =1, equations (1.22) and (1.15) are identical. Dependence

of the amplitude vector )? - on the parameter 4

— —

X, =X,[h] (1.23)
is a & -characteristic of equation (1.22). At =0 it passes through the zero solution, and at
h=1 - through the root of equation (1.15).

Dependence (1.23) can be obtained by integrating some vector differential equation for
which this function is a solution. To obtain the following differential equation, we differentiate
equation (1.22) by the parameter 7 :

Y 7 .
D ar, + %:EF
dh dh '
Here the derivatives of the amplitude vectors Y - and 7 - with the parameter 2 must be

disclosed according to the rule of differentiation of complex functions, taking into account the
existence of harmonic characteristics (1.19):

(1.24)

AT A TR
Then, taking the notation
%;S’YF; %=SZF , (1.26a, b)
differential equation (1.25) is reduced to the form
(@DS, +S,) dfhf =E, . (1.27)

Here Sy, and S, are square matrices of the order N . Of differential parameters of

harmonic characteristics (1.19). Let us call these matrices matrices of differential harmonic
parameters (MDHP).

MDHP (1.26) relates the values of infinitesimal increments of the components of vectors

Y., Z, and X, ie, infinitesimal increments of amplitudes of all considered harmonics of
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dependences (1.5) - (1.7). If functions (1.3) and (1.4) are nonlinear, then matrices (1.26) are

variables and are functions of the vector X .- The MDHP calculation algorithm is outlined

below.

To obtain the dependence (1.23) in tabular form, the differential equation (1.27) must
be integrated by one of the numerical methods for the parameter h from h=0 atzeroinitial
conditions X =0 to 4 =1. The value of the vector X obtained at 2 = 1 can be

considered as an approximate solution of the finite equation (1.15) and as a "good" zero
approximation to refine the solution by Newton's method.

The formula for refining the solution of equation (1.15) by Newton's method has the
form [44, 48]

—

- 1=
Xram =Xray=Way Hay s (1.28)
here [ - iteration number;

Wy =& D Sy, + Sz (1.29)

— —

- the value of the Jacobi matrix of the left part of equation (1.15)at X =X ray

Hy=wDYrpy+ 2 —E; (1.30)

—_ —

- the value of the residual vector of equation (1.15) at X, =X ;.
In order to refine the solution of equation (1.15) according to the iterative scheme (1.28)

not to rotate the martix, but to solve a system of linear equations, this scheme can be written as:

I/V(l) AXI"(I)_ ()

—

Xr(1+1) = Xr(z) AXF(Z)'

(1.31)

In (1.31) first line is a system of linear equations with respect to the vector unknown AX o

it is vector of amendments.

lterations according to schemes (1.28) or (1.31) must be performed until the required
accuracy of solution of equation (1.15) is reached.

If the differential equatiom whose periodic solution we are looking for has the form
(1.20) and its harmonic reflection has the form (1.21), than the differential equation required to
obtain / -characteristic has the form

(@D +S,.) %:EF (1.32)
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And necessary for refining the solution by Newton’s mrthod the residual vector and the Jacobi’s
matrix in /-th iteration have the form

—

Hy=0DX,+Zrg—Er ; (1.33)
Wy =wD +S,q - (1.34)

As you can see, to obtain the root of equation (1.15) or (1.21) in the described way,

it is necessary to calculate the values of the amplitude vectors Yr, Z, and matrices Sy, ,

S, for the value of the amplitude vector X ~ When obtaining the zero approximation by

calculating the h-characteristic and at each iteration when refining the solution by Newton’s
method.

1.3 Algorithm for calculating harmonic characteristics

—

In the previous section, the calculation of the values of the amplitude vectors Y, and

Z - for the given value of the amplitude vector X - ie the calculation of the harmonic

characteristics (1.19), is described schematically. Let's look at it in more detail in order to obtain
an algorithm suitable for computer implementation.

If the value of the amplitude vector X - Is given, then the value of the variable x for any
value of the angular coordinate 77 = @wt s determine, taking into account (1.8), by the
formula

x=X,+ i(Xcvcos vn+ X, sinvn). (1.35)
v=I

Using the nonlinear dependence (1.3), which connects the variables x and ), and the set
of values of the variable x calculated by formula (1.35) for the set of values of the angle 77
from zeroto 277, we can define in the form of a table 27 -periodic dependence y=y[n] as
a function of angle 77. Then, similarly, using the dependence (1.4), which connects the variables
z, x and ¥, and the dependence just obtained in the form of a table dependence  y=y[n]

we can determine the dependence z=z[7], in tabular form, which is also a 27 -periodic

—

function of the angle 77. To find the values of the components of the vectors of amplitudes Y.

—

and Z

and decompose them into Fourier series by the formulas of the form (1.18):

-, itis necessary to obtain the numerical dependences y=y[n] and z=z[7]
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2 127[
Yo=—1[ylnldn, Y., =— [ylnlcosvndn;
e o (1.36a)
Y, =— [y[nlsinvndn;
T o
1 27 27
Z, =2—IZ[77]d77; Z.,=—[z[nlcosvndn;
e o (1.366)
Z  =—|z[nlsinvndn; v=1..n

T 0

The integrals in formulas (1.36) will be calculated by one of the known numerical methods. To
do this, we apply a one-dimensional grid of equidistant 72 nodes for the period T =27

(see Fig. 1.1), the number of which must be sufficient to ensure the required accuracy of
calculating the values of the integrals.

wT=21

/

1, rad

Fig. 1.1. Dependence of the variable X' on the angular coordinate 7] on the period

If the dependences x = x[77] , y=y[n] and z=z[n] contain only odd harmonics
and the amplitude vectors have the form (1.14), then in integrals (1.36) the upper limits of

integration must be changed from 27 to 7, before the integrals put a coefficient 2 and
impose a one-dimensional grid of 72 nodes on the half-period.
From the values of the functions x = x[7n], y=y[n] and z=z[n] in equidistant

m nodes of the grid in the period (half-period, if the searched functions contain only odd
harmonics) we form column vectors

X, = colon(xy, X5 s X)) (1.37a)
Ve =colon(yys Yiys s Vi) (1.376)
Z, = colon(zyy, Z(ays s Z(m)) (1.378)

23



which we call nodal vectors.
The value of the node vector X, (ie - the set of values of the variable x in the nodes

—

of the period) can be obtained by the value of the amplitude vector X, by performing a
matrix operation

x,=FX,, (1.38)

Here

1 cosn, sinn, cos2np, sin2p, --- cosnn, sinnn,

1 cosn, sinn, cos2n, sin2np, - COSHI, Sinnn,

(1.39)

F= : : :

1 cosn, sinn, cos2n, sin2np, - cosnr, sinnn,

1 cosn,, sinn,, cos2n,, sin2np,, - cosnn,, sinnn,,

- a matrix with dimensions mx N g the elements of which are units in the first column and

in the other columns - numerical values of trigonometric functions cosvp,
sinvy (v=1,...,n) inthegrid m nodes for the period.
Having calculated by formula (1.38) the value of the node vector X, the structure of

which is given by formula (1.37a), determine the values of the node vectors y_, and Z@ whose
structures are given by formulas (1.37b) and (1.37c), in the following order:

1) by the values of the n1st, 2nd,..., m-th component of the vector X, and by the
dependence (1.3) we determine the values of the 1st, 2nd,..., m-th component of the vector
Ves

2) by the values of the 1st, 2nd,..., m-th component of the vectors X, and Y, and
depending on (1.4) we determine the values of the 1st, 2nd,..., m-th component of the
vector Z, .

Calculating the values of vectors ), and Z, the value of the vector X, is the

implementation of the so-called "instantaneous" model of the process in the period (half): the
instantaneous values of the independent variable x in the nodes of the period (half) determine
the instantaneous values in the same nodes of dependent variables y and Z .

According to the values of the nodal vectors V7, and Z, found by the described method,

—

it is possible to calculate the values of the corresponding vectors of amplitudes Y . and Z,.

Each of the components of these vectors should be determined by formulas (1.36), using one of
the known numerical methods for calculating the values of definite integrals. So, for the

—

components of the vector Y, we write
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YO:

Y.,

¥,

2
=— [ycosvndn=—
T o T

2
=— [ysinvndn = —
7T 0 T

] 27 1 27
oy (I)y dn = Z;(é@)’(n +S0) V) Tt

1
ot é(m)y(m)) == ;(én)’(l) + ‘f(z)y(z) +...t é:(m)y(m));

1 27
—(Say Yy COS VI g+

m
+ 5(2))/(2) COSVIpyt...+ f(m)y(m) coS Vn(m)) =

2
= _ (£ Yy COS VI g+ 5(2) Y(2) COSVI )+ ...

et S Vi) COSVI ) );
1 27 )
— Sy Y SInVI g+
m
+ 5(2) Yoy sin V)t -t cf(m) Vim) sin vn(m)) =
2 : .

coet Sy Vimy SV ),

(1.40)

here  7ys M2)>++ > Mmy - the value of the angle 77 inthe 77, 75y, 7],, Nodes to

pass the period (southern period); &y, &2)5-++>S (- Weights of the selected quadrature
formula (formula for calculating the values of a definite integral). When using the quadrature
formula of rectangles or trapezoids &y = &y =... =&,y =1; if we apply Simpson's
quadratic formula, then the number of nodes m for the periods (southern period) must be even
and 5(1) =2/3, 5(2) = 4/3, ees (f(m_l) = 2/3, f(m) = 4/3.

Calculation by formulas of the form (1.40) values of all components of vectors Y. and

—

Z . can be carried out by performing the following matrix operations:

here

Y, =GJ,;

8

Z,=GzZ,,

2 opT
G=- OF'f,

— matrix with dimensions N g X1
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— diagonal matrix with size IV, ;

F" — amatrix transposed with respect to the matrix (1.39):
9377 — diagonal order m matrix, the elements of the diagonal of which are the weights of the

selected quadrature formula.

The matrices F and G we will call matrices of harmonic transformations, in
particular G - the matrix of direct harmonic transformation (from values in nodes of the period
or half-period to the values of harmonic amplitudes) and  F’- the matrix of inverse harmonic
transformation (from values of harmonic amplitudes to values in nodes). When solving each
specific problem (project) for the given values n and m values of these matrices should be
calculated only once and kept unchanged until the end of the calculations at these values n
and m . Expressions (1.39) and (1.42) for matrices of harmonic transformations correspond to
random ones, when the amplitudes of harmonics have constant components and all harmonics
up to n-th including. If abbreviated amplitude vectors are used in the calculations, then instead
of matrices F and G in formulas (1.39) and (1.42) should be the reduced matrices of

harmonic transformations F, and G, .

The matrix F,,. can be obtained from the matrix /£ by removing from it those columns

that correspond to the components of the amplitude vector, which are removed in the formation
of a shortened amplitude vector. Thus, if the abbreviated amplitude vector has the form (1.14),

ie has in its composition harmonics of only odd orders, then the matrix £, takes the form

cosn,, sinr,  cos 377(1) sin 377(1) e cosnf,,  sinnn,
COS7), SIn7y,  COS 377(2) sin 377(2) e+ COSMT, SINAT,
: 1.44)
F = (1.
CK M . .
cos7,, sin7; — cos 377(j) sin 377(].) oo cosnn,,  sinnr
cosr,, smnn,, cos3dn,, sin3np,, -+ cosnn,, sinnn,

When calculating the value of this matrix, keep in mind that the angular coordinate of the m -
th node 77,,,, = z(m —1)/m, ie the grid of m nodes is plotted in half, and that the
number #n is odd.

Amatrix G__can be obtained by formula (1.42) if instead of a matrix £'*  we substitute

a matrix Fci and instead of a matrix © - a matrix @ __formed from a matrix ® by removing

rows and columns with element numbers that are removed from the amplitude vector to form a
shortened amplitude vector. In the case where the reduced amplitude vectors have harmonic

amplitudes of only odd orders, the matrix @ is a unit matrix.
The algorithm described above for calculating the values of the amplitude vectors Y.

and Z - for a given value of the amplitude vector X ., ie the calculation of one "point" of the

AR
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harmonic characteristic (1.19), is called algorithm 1.1. Its operations can be described by the
following sequence of directives:

a) for a given value of the vector of amplitudes X ,. by formula (1.38) to determine
the value of the nodal vector X _;

b) by the values of the components of the vector 766, and formulas (1.3) and (1.4),
which can be specified both analytically and in tabular form, calculate the values of all
components of the node vectors J, and Z, (calculation of the values of the nodal vectors

and the value of the nodal vector Y, and Z, - is the implementation of the instantaneous
period (or half-period) model of the process);
¢) according to formulas (1.41) and the values of the vectors calculated )78 and 26

according to item “b” of this algorithm and calculate the values of the vectors of amplitudes Y i

—

andi Z

re

1.4 Algorithm for calculating matrix values
of differential harmonic parameters

First, we derive formulas for calculating the values of the differential
parameters of harmonic characteristics (1.19) - matrices S, and S,.
According to formulas (1.26), (1.38) and (1.41) we have

_dY. dY. dy, di

== —-—===GS F,
dX, dy, dx dX, g
Tl e (145 2.6)
= 42, 45 4%, _Gs P,
dX, dzZ dx dX,
here
s =40 g 94 (1.46 2.6)
" dX, dx,

- square order m atrices. They are diagonal because in nodal vectors V., Z, and X,
interconnected are only their components of the same name (ie components with the same
indices, for the same values of the angular coordinate in the period or half-period). Diagonal
elements of matrices (1.46) are the values of complete derivatives of functions (1.3) and (1.4)
on the variable x in the nodes of the grid on the period (half-period).
In the general case, when a variable z is a function of two arguments - x and ), we have
dz 0z dy 0z
5, =45 .
dx, 0y, dx, OX,

=S.,S,+5S.,, (147)

here
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} A
_ 6? . 5. =% (148 2.6)
0y, 0X,

zve

- diagonal matrices of order 1, their elements are equal to the values in the nodes of the grid
of partial derivatives of the function z according to its arguments ) and x.

Therefore, to calculate by formula (1.45) the values of MDGP Sy,and S~ you must
first calculate the values of the matrices

d d d
Sy, =diag (— 8 M y‘@)’ y‘(m)) (1.49)
S, =diag ( Z‘(1)> Z‘(z)a az‘(m)) (1.49b)
’ oy ' 9y
. 0z 0z
Szxgzdlag(ax‘(l) > ax‘(z)a "-95‘(,"))- (149C)

The elements of these matrices are calculated using dependencies

d d 0z Oz 82 _ 0z
L =Tl Zlayl, (150
dx dx oy Oy ox ox

which are obtained by differentiating (analytical or numerical) dependences (1.3) and (1.4).

Calculation of values of diagonal elements of matrices S, S, and S on values of

elements of a vector 556, together with calculation of values of nodal vectors and, is the

implementation of the instantaneous period (half-period) model of the process.
Matrices S, S, S,, and S are called matrices of differential parameters of

characteristics (1.3) and (1.4) in grid nodes or matrices of node differential parameters (MNDP).
The algorithm for calculating the value of MNDP by the method described above (call it
algorithm 1.2) can be expressed by the following sequence of directives:

a) for a given value of the amplitude vector X ~and formula (1.38) to calculate the value
of the nodal vector X, ;

b) by the value of the vector )?6 and the dependence (1.3) to calculate the value of the
vector )76 (instantaneous on the period (half-period) model of the process);

c) according to the values of vectors 556 , )76 and formulas or algorithms that

approximate the dependences (1.50), calculate the value of MNDP.S , S ,and S_, (the
instantaneous (half-period) process model);
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d) according to formulas (1.47) to calculate the value of MNDP S'_ ;
e) by formulas (1.45) calculate the value of MNDP S, and S,

Consider the second method of calculating the values of MNDP, more economical in its
numerical implementation - it requires fewer arithmetic operations.

The matrix S,,., which is a derivative of the vector function Y -~ by the vector argument

—

X ,., in the expanded form of the record has the form

oy, oY o oYy, oy
0X, 00X, 0X, 0X,, oxX,,
or, or, or, oY, .. oY,
0X, 0X. oX, 0X,, ox
ov, oY, o, o, o,
SYT: a‘XYO a):(cl a‘X:vsl a‘X:c,u a‘X:vsn . (151)
or,, oy, ov, o, 0,
0X, 00X, oX, ox,, ox .,
or, oy, oy, . or, = Y,
0X, 0X. OoX, ox,, ox

Let’s derive an expression for one of the elements of the matrix (1.51) - a partial derivative
oY, /0X_,. Taking into account (1.36a) and (1.35) we obtain

oY, 12 oy . l2xdy ox
Z s & sinvndn = — sinvndn =
oX, « ! o0X,, e j dx 0X, e
- (1.52)
= !—x cosunsinvndn = — j y cosun sinvndn,
here
d
2= =yl (1.53)
dx

- dependence on the angular coordinate 77 of the derivative dy/dx.

Expressions for other elements are displayed similarly. Here are them without output
(distrustful reader is recommended to display them yourself):
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oY, 12z oY, 12
—% = [ydn; 0 = — [ycosndn;
ox, ~ 207N ox, o Jxeosndi
oY, 12 . Yy, o .

== [y sinndn; O = [ysinnndn;
ox, g xS oy = lysmundy
oY, 2 oY, 2 2
—< = ycosndn; —<L=1] ycos ndn;
ox, )X o0sT4T ax, o Xo0s A
oY, 27 : oY, 2z :
—<L = [ ycospsinndn; —<-=[ycosnsinnndn;
oX, (J);( nsinndn X, (I);c nsinnndn
oY, = . oY, 27
sl sinndn; — = sinnpcosndn;
oX, ({ xsinndn X, gz ncosndn
aYl 27[ . 2 aYl 27[ . .
— sl sin“ ndn; — 5 = sinnsinnndn;
oX, (I)z ndn v {)z nsinnndn
oY 2f[ J 2J{T Jd
v — coSV ; —= [ ycosvncos ;
ox, OZ namn ox | OZ rncosnan
oY 2ff o d 2ff :
“Tev - cos v sin ,—= [ ycosvnpsmnn;
ox OZ nsmnarn ox. OZ n Ui
oY 2z oY, 2z
“Tsn sinnndn; — = [ysinncosndn;
oX, £ xsinnndn oX. (I)z ndn
oY 2t | : oy, =@ .,

n— sinnpsinndn; —"= sin“nndn.
ox, ) smmnsinadips o = LS nndi (1.54)
Let's approximate the dependence y = y[7n7] by the Fourier series:

2n
x[nl=R+ X (P, cosvn+Q, sinvn). (1.55)
v=l

After substituting (1.55) into formulas (1.54), performing trigonometric transformations and
integrating using tabular integrals, expressions (1.54) are determined by the coefficients of the
series (1.55), and the matrix (1.51) takes the form:

SYF :5 X (156)
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2R })1 Ql Pv Qv })n Qn

2E 2R + I)Z Q2 Pv—l + P,,+1 Qv—l + Qv+1 Pn 1 + Pn+1 Qn—l + Qn+1
2Q1 Q2 2R - I)Z . T Xy + Qv+1 PV_] - PV+1 " o Qﬂ—l + Q"+1 f)n—l - Pn+l
2R/ PV 1 + PV+1 - Qv—l + Qv+1 - 2R + [)2v QZV b ])n—v + 1)n+v Qn—v + Qn+v
2QV Qv—l + Qv+1 Pvfl - PV+1 L sz 2R - [)ZV " - anv + Qn+v ])nfv - ID,H_V
2])’! ])n—l + ])rH—l - Qn—l + Qn+1 . ])n—v + 1)n+v - anv + Qn+v - 2R + P2n an
2Qn Qﬂ—l + Qn+l Pn—l - Pn+1 " Qn—v + Qn+v Rl_v - Pn+v " an 2R — })2}1

All coefficients of the series (1.55) to the 27 -th harmonic can be calculated, by analogy with
formulas (1.41), by performing such a matrix operation

V_:YI" = G2n vye 2 (1 57)
here
V, =colon(R,R.0,,...P,.0,....P,.0,) (1.58)
- vector of amplitudes of dimension 1+ 4, formed from the coefficients of the series (1.55);
_ dy d y d y
Vye = COZO”( ‘ O ‘ @) ‘ (m) (1.59)

- vector-column, the components of WhICh are dlagonal elements of the matrix (1.49 a);
G, - a matrix of direct harmonic transformation of the form (1.42), but which has

N, =1+2n notbut N,y =1+4n lines.

Formulas for calculating the values of the matrix S, are obtained similarly, only when
calculating the values of the vector VZF of the form (1.58) by a formula similar to formula (1.57),
the vector v__ is formed by the rule
dy 82

" dx ax

ozl dyl
(1) "’ay‘(m) dx‘(m)

5Z|

+
8x‘(m)

V., =colon(— ). (1.60)

y

The algorithm for calculating the value of MNDP in the manner described above
(algorithm 1.3) can be expressed by the following sequence of directives:

a) according to the given value of the amplitude vector X ~ and by the formula

M

(1.38) calculate the value of the nodal vector 766 ;
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b) by the value of the vector 556 and using the dependence (1.3) calculate the value of

the nodal vector )76 (instantaneous model of the process);
c) the values of vectors (1.59) and (1.60) are calculated from the values of vectors
766 : )76 and expressions for derivatives (1.50) (instant process model);

— —

d) by the formula of the form (1.57) calculate the values of the vectors V,.and V. ;

e) by the components of the vectors Vypand VZF and formula (1.56) calculate the

value of all elements of the matrices S,,.and S ..

Algorithm 1.3 calculates the value of MNDP compared to algorithm 1.2 is implemented
by a larger computer program, but it is more economical in terms of machine time. Indeed, the
number of multiplications when performing matrix operations by formula (1.495) is proportional to

(1+ 2n)?, while when determining by formula (1.57) the coefficients of the series (1.55) in the

form of vectors (1.58) the number of multiplications is proportional to 1+ 47 ..

If only abbreviated amplitude vectors appear in the problem, then the MNDP that
correspond to them are also abbreviated. The abbreviated MNDP can be obtained from (1.51)
or (1.56) by extracting in it those rows and columns that correspond to the extracted amplitudes
of harmonics in the formation of abbreviated amplitude vectors.

For the case when only odd harmonics are present in the periodic process and the
shortened amplitude vectors have the form (1.14), in (1.56) it is necessary to remove rows and
columns corresponding to the constant component and harmonics of even orders. Then we see
that the MNDP elements are formed from the amplitudes of only pair harmonics of the Fourier
series, which represents the dependence (1.53) of the derivative on the angular coordinate. In
particular, in the case when only harmonics with numbers 1, 3 and 5 are taken into account, the
MNDP matrix takes the form

ro % = 1/2 X
Ie

2R + P, Q2 P,+Py | Q2+Q4 | PytPs Q4106

Q; 2R—P, | =Q2+Q4 | P,—P, | —Q41Q¢ | P,—Ps
P,+P, —Q2tQ4 | 2R+ P 0F P,+Pg | Q21Qs

Q+Qy | P—P, Qe 2R—Ps | —Q;+Qg | P,—Pg (1.562)
Py+Pg —Q4+Q¢ | P2tPg —Q;+0Qg | 2R+ Py Q10
Q410 P,—Pg Q2+0Qs P,—Pg Q10 2R — Py

Note some properties of MDGP.
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An important property of MDGP is its symmetry. Yes, if the matrix is divided into four blocks
(in formula (1.96) it is done with double lines)

1

S, :_.H S S

, (1.61)
S21 S22

2

that S, is, a square symmetric matrix and §,,= Sf;. This property of symmetry should be

taken into account when calculating the matrix S,,.: calculate only the elements of the matrix

located on its diagonal and above (or below) the diagonal, and other elements - by simply
assigning the value of the corresponding element from the other half of the matrix.

The symmetry of the matrix §,, is a consequence of the symmetry of the
interrelationships of infinitesimal increments of harmonics of different orders of dependence (1.7)
and (1.5). The fact that the elements 0Y,, /0X, and 0Y,, /OX  of matrices (1.51) are

the same means that with the same small increments of amplitudes X, and X of

dependence x =x[n] small increments of amplitudes Y, . and Y of dependence

vy = y[n] wil also be the same.

In the general case, all elements of MDGP are nonzero, and then this indicates a
complete relationship between harmonics of all orders of function and argument. In a special

case, when the dependences (1.3) and (1.4) are linear functions, then in the matrices S ,. andi

S, nonzero are only diagonal elements, and they are all the same: the linear dependence of
the variables ¥ and z fromthe variable x determines the same - relationship of all harmonics

of function and argument of the same order.
Analyzing the obtained formulas for calculating the values of MDGP elements, it should
also be noted a very interesting pattern: the elements of the MDGP matrix are determined by

the coefficients of the series (1.55) only up to the 27-th harmonic, and each element is
determined by one of these coefficients or the sum or difference of only two.

In the first approximation, MDGP S,,.connects vectors of small increments AX r

— —

and AY,. vectors of amplitudes X . and ¥.:
AY,. =8, AX, . (1. 62)

Thus, a small increase in the amplitude of any harmonic of a variable ) (as a function) consists
of terms, each of which is a contribution of a small increase in the amplitude of the corresponding
harmonic of the variable x (as a argument). Thus, a small increment AY_, (increase in the
cosine amplitude of the first harmonic of the variable y) is determined by the formula (let the
harmonics be taken into account only for the 3rd inclusive):
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AY, =AY, +AY,

cl,c
= Syre1.0AX o + SyrrenyAX o + SyriersnAX
+ SyrersnAX 3 + Syr(ere3AX.

= 2BAX,+QRR+P)AX_, +O,AX,+(F+B)AX , +
(O +O0)AX, +(B+ P)AX 5 +(0, + O AX 5,

| HAY,

cl,s

| +AY,

cl,c

, +AY

cl,s

, +AY

s TAY, 3=
1+ SyreerenAX o +

1.63
3+ Syrens3)AX 3= (163)

here
Syreer.y (J=0,cl,s1,¢2,52,¢3,53 ) — the corresponding element of the

second row of the matrixS,.; AX i (j=0,cl,sl,c2,52,c3,53 ) — increments of the

constant component and the cosine and sine amplitudes of the harmonics.of the dependence
x=x[n].

By formula (1.63), the first term of the increment AY, ,formed by the increment of the
constant component of the dependence x = x[77] is determined only by the cosine amplitude

of the first harmonic of the dependence (1.55). The second term, formed by the increase in the
cosine amplitude of the first harmonic of dependence x = x[77], is determined only by the

constant component and the cosine amplitude of the second harmonic of dependence (1.55).
The third term, formed by the increase of the sinusoidal amplitude of the first harmonic of
dependence x = x[77], is determined only by the sinusoidal amplitude of the second harmonic
of dependence (1.55). The fourth term, formed by the increase in the cosine amplitude of the
second harmonic of the dependence x = x[77], is determined only by the cosine amplitudes of
the first and third harmonics of the dependence (1.55). The fifth term, which is formed by the
increase of the sinusoidal amplitude of the second harmonic of dependence x = x[7], is
determined only by the sinusoidal amplitudes of the first and third harmonics of dependence
(1.55), etc.

Therefore, in the terms of formula (1.63) small increments of cosine amplitudes ofof the
harmonics dependence x = x[77] are multiplied only by the cosine amplitude of the harmonic
of the dependence (1.55) with the closest order on the right or by the sum of cosine amplitudes
of dependence harmonics (1.55) with the nearest orders of magnitude harmonics of dependence
x = x[n]. The small increments of the sine amplitudes of the harmonics of the dependence
x =x[n] are multiplied only by the sine amplitude of the dependence harmonic (1.55) with
the closest order on the right or by the sum of the sine amplitudes of the harmonics of the
dependence x = x[77] with the nearest orders on the left and right.

This observation of the relationship between the increments of the amplitudes of the
harmonics of variables x and ) (a similar relationship is between the increments of the
amplitudes of the harmonics of variables x and z) is new, it is worth noting experts in the
design of nonlinear devices the relationship between the desired harmonics of the variable-
argument and the variable-function.
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1.5. Periodic solutions of nonlinear systems of differential equations

In the previous sections, we considered the essence of numerical polyharmonic modeling
of forced oscillations on a simple example - consideration of the algorithm for finding the periodic
solution of a nonlinear scalar differential equation. Now we can proceed to a more complex task

- to consider algorithms for finding periodic solutions of nonlinear systems of differential
equations.

1.5.1. The notation form of a nonlinear system of differential equations

As noted in the Introduction, the oscillations described by nonlinear systems of
differential equations can be forced, parametric or auto-oscillations. To ensure the same
approach to the numerical simulation of all these types of oscillations using unified software, the
system of differential equations describing the oscillations will be reduced to the form

dy -
4z &=0, (1.64)
dt
or
dXx -
Yz 6-0, (1.65)
dt
or
dy _
B—ty+2—e=0, (1.66)
or
dXx -
B Y iz 6-0, (167)
dt
X1 M1 Z €
here X=|x;l; y=|y;|s Z=|z;|5 e=]|e (1.68a,b, c,d)
Xk Yk Zy €

- matrix-columns (vectors-columns), each of which has & elements, and the vector € isa
vector of external forcing forces;
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by, blj by,
B=|b, - bl.j e by (1.69)
by, bkj by

- constant square matrix of the % -th order.
Each of the vector differential equations in the notation forms (1.64) - (1.67) is a system

k scalar differential equations of the first order.
If there is a periodic dependence on time

¥=¥[] =¥[t+T], (1.70)

that satisfies the differential equation in one of the notation forms (1.64) - (1.67), it is its desired
periodic solution.
In the notation forms (1.64) and (1.66) under the sign of the derivative there is not a

vector X whose periodic dependence (1.70) is the desired periodic solution of the vector
differential equation, but some vector 7 which is a nonlinear function of the vector X

y=ylx] (1.71)

or, in expanded form,
N =YX X X 1

(1.71a)

Vi = Vil X X ey X 1

If in the equation in one of the notation forms (1.64) - (1.67) the vector of external
forcing forces € is nonzeroandisa T —periodic function of time

& =é[t] =é[t+T], (1.72)

and the vector Z is some nonlinear function of the vector X

Z=Z[X] (1.73)
or ot the vectors X and )
Z=Z[x, y], (1.74)
then the equation describes the forced oscillations.
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The vector functional dependence (1.73), if written in expanded form, has the form

Zy =2y [ Xy X s X 1

(1.73a)
Zp = Zi [ Xy X X ]
and dependence (1.74) — the form
2y = Z)[ Xy X e Xy Visers Vjoeees Vi 15
(1.74a)

Zp = Zp[X s X s Xy Vysens Voo Vi )

If in the equation of one of the notation forms (1.64) - (1.67) the vector € is zero and
among the arguments of the vector Z is time #

F=Z[%,(] (1.75)
or
F=Z[%, 7,1, (1.76)

then such an equation can describe parametric oscillations.
The expanded form of functional dependence (1.75) is as follows

zZ, = zl[xl,...,xj,...,xk,t];

(1.75a)
Z, = zk[xl,...,xj,...,xk, t]
and the expanded form of dependence (1.76) is as follows
2y = Zy[X s X et Xy Visees V jseees Vi L]
(1.76a)

Z, = zk[xl,...,xj,...,xk,yl,...,yj,...,yk, t].

Finally, if in the equation of one of the notation forms (1.64) - (1.67) the vector € is
zero, and the vector Z among its arguments does not contain time, ie is a function of only the
vector X as specified in (1.73), or vectors X and ) as specified in (1.74), such an equation
can describe self-oscillation.
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1.5.2. Harmonic algebraization of a vector differential equation

The first step in determining the periodic solution of a vector differential equation in one
of the forms of notation (1.64) - (1.67) is its harmonic algebraization - the notation of an algebraic
nonlinear vector equation, which is a harmonic reflection of the vector differential equation.

Performing harmonic algebraization of a scalar differential equation is described in
Section 1.1. Harmonic algebraization of a vector differential equation, or a system of first-order
differential equations, is performed similarly. The periodic dependences on the time of the
variables  x,,...,x, (vector X), y,,...,y, (vectory), z,...,z, (vector Z), e,...,e,

(vector) are approximated by trigonometric series of the form (1.8) and we substitute these
approximations into a system of differential equations. After performing the differentiation
operation, this system is transformed into a system of algebraic equations, the amplitudes of the
harmonics of the trigonometric series of which are unknown.

Such algebraization, by analogy with the formal rule set forth in Section 1.1, can be
performed as follows: each vector of variables in the vector differential equation must be
replaced by an amplitude vector and the differentiation operation must be replaced by
multiplication on the left by the circular frequency of the first harmonic and the differentiation
matrix.

As a result of harmonic algebraization of the vector differential equation (1.64) we obtain
the vector algebraic equation

oD Y. +Z;.—-E;.=0, (1.77)
here
D" =diag (D,...,D,...,D); (1.78)
Yi=colon(Y,r, ....¥; s Yir); (1.79)
Zi=colon(Zyp, ...Z s Zyp); (1.80)
E}=colon(Er, ....,E ;py.... E ). (1.81)
The root of the vector algebraic equation (1.77) is a vector
Xi=colon(X,p, ... Xy X1 (1.82)

Since in the differential equations of the form (1.64) - (1.67) the variables are -component
vectors of the form (1.68), each of the vectors (1.79) - (1.82) consists of components, each of
which is a vector of the amplitudes of the form. (1.13). Let us call the vectors (1.79) - (1.82)
composite vectors of amplitudes.

The formation of composite amplitude vectors from simple amplitude vectors of the form
(1.13) by the method of their sequential recording one after another is called a sequential method
of forming a composite amplitude vector. With this method of forming composite amplitude
vectors, the matrix (1.78) is block-diagonal, it has the same blocks diagonally - matrices of form
differentiation (1.16) or (1.17). The matrix (1.78) is called a composite differentiation matrix.
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The result of harmonic algebraization of the differential equation (1.65) is an algebraic
equation

oD X, +7Z7-E;=0. (1.83)

The result of harmonic algebraization of differential equations (1.66) and (1.67) is equation

wB. DY +Z,-Er=0 (1.84)
and
wB,. D" X, +Z,.—E;=0, (1.85)
here
Bur BljF BlkF
Br=|Byr - Byr v By (1.86)
Ble BkjF BkkF

- constant square block matrix of order kN g lts components are blocks - diagonal matrices of

order N o and form
Bl.jr =diag(bl.j,bl.j, ey bl.j ), (1.87)

having their elements corresponding to the elements of the matrix (1.69).
Records of nonlinear vector algebraic equations (1.77), (1.83) - (1.85) are generalized
by one record

Ur[X;]=0. (1.88)

In this section and in all subsequent sections, the presence in the names of the amplitude
vectors or the corresponding matrices of the upper right index "=*" (asterisk) carries the

information that these amplitude vectors or matrices belong to the vector algebraic equation
obtained by harmonic algebraization of the system of differential equations.

The harmonic algebraization of systems of differential equations described in this section
does not have to be performed by the user of the method when modeling oscillations, if, as will
be shown below:

1) the software described in Chapter 2 is used;

2) the system of differential equations is reduced to one of the forms (1.64) - (1.67).
In other cases and if a detailed analysis of the software components of the software presented
in Chapter 2 is necessary, the user may need to perform the procedure of harmonic
algebraization of the considered nonlinear system of differential equations.
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1.5.3. Determination of the periodic solution
of a nonlinear system of differential equations

If the vector differential equation describes forced or parametric oscillations, then the
circular frequency of the fundamental harmonic of its periodic solution is known in advance. In
the case of self-oscillations, it is unknown and is determined together with the amplitudes of the
harmonics. In order to unify the solution search algorithm so that it is suitable for both forced or
parametric oscillations and for self-oscillations, we will consider the value of the variable and
introduce a vector

.. X
=" 7 (1.89)
@
We consider it as the root of some nonlinear vector finite equation
U'[X"]=0. (1.90)

Since the number of unknowns is one more than the number of unknowns of equation (1.88),
another scalar equation must be added to equation (1.88) when it is formed.
For the case when the last component of the vector (1.89) is known in advance and equal

to the given value @, (forced or parametric oscillations), this additional equation can be written
as

w—w,=0 (1.91)
or, in matrix form,
C,,X -w,=0, (1.91a)
here
C,. =00, ..,0,1 (1.92)

- matrix-row size kN g T 1, formed of zeros and one unit, which occupies the last position.

If the value @ is wanted (self-oscillation), then this additional equation can be an
equation

C, X' = 0, (1.93)
here
C,=

0,1,0,0,...,0

| (1.94)

- matrix-row kN g T 1 size, formed of zeros and one unit, which occupies the second position.

The appearance of this matrix is due to the following considerations.

Nonlinear autonomous systems of differential equations describing self-oscillations are
nonisochronous, ie the frequency of self-oscillations is not given, but is determined by the
internal parameters of the system, which depend on the amplitudes of the harmonics of the
regime quantities of the oscillatory process. Since such oscillations are not tied to any external
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forcing forces, the time coordinate of the beginning of the period of oscillations can be chosen
arbitrarily. Thus, for the beginning of the period it is possible to take such value of time at which
one of harmonics of one of variables of process passes through zero, and for this purpose it is
necessary to accept cosine amplitude of this harmonic equal to zero. The fact that in the matrix-
row (1.92) the unit occupies the second position means that equation (1.93) is set equal to zero

cosine component of the amplitude of the 1st harmonic X, of dependence X, =x,[¢], in

the case when constant components and harmonics of all orders are taken into account, and
sinusoidal component of amplitude 1st harmonic X, if only harmonics of odd orders are
taken into account.

Thus, the left-hand side of equation (1.90) in the simulation of forced or parametric
nonlinear oscillations has the form

L 17* )_(’*
U,[X 1= FE*F] (1.95)
CG.I’Z X _a)3
and in the simulation of self-oscillations - view
Y (_]’* X*
Ul[X']= rl qf] . (1.96)
C,X

The search for the periodic solution of a nonlinear vector differential equation in one of
the notation forms (1.64) - (1.67) is reduced to determining the root of the nonlinear vector finite
equation (1.90). First, we will look for an approximate value of this root and then refine it.

To obtain the approximate value of the root of equation (1.90), we use the method of
continuation by parameter in the following modification [48]. We give an arbitrary initial value

X=X o and calculate the value of the left part of equation (1.90), ie - the discrepancy
(residual) vector

Hy=U[X"=X,] (1.97)
This discrepancy vector will have numerical zero value only if X=X ;; is the root of the

equation (1.90).
We assume that the algorithm for calculating the values of the composite amplitude

vectors ¥ and Z . required for the calculation U -[X )], ie the left side of the equation
in one of the forms of notation (1.77), (1.83) - (1.85), the value of the composite amplitude vector
X ;. ie the calculation of harmonic characteristics

Y. =Y[X}) Zp=Z1[X}], (1.98)

is known (it will be discussed below). Using the discrepancy vector H ;; , We create a new
equation

U'[X'1-(-h)H; =0, (1.99)
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in which /2 - a scalar parameter. When /% =0 the solution of equation (1.99) is known, this
isagivenvalue X* =X ; ,and when /1 = 1equation (1.99) becomes identical to equation

(1.90) and, therefore, their solutions coincide. At continuous change of parameter /4 there is
a dependence

—

X" =X[h], (1.100)

whichwhen 4 =0 passes through X=X ;; andwhen A =1 passes through the desired

root of equation (1.90). The dependence (1,100) is integral with respect to some vector

differential equation, which can be obtained by differentiation by the parameter % of equation
(1.99). Let us perform this differentiation, taking into account that in this equation the vector

H isa constant:

dUw+gg:L%di+gg=o (1.101)
dh dX" dh

or

W= =-H;, (1.102)

here W™ - Jacobi matrix of equation (1.90). This matrix has the following structure —

we | we

W= , (1.103)
C

here C - matrix-string of size AN g T 1, in the case of modeling of forced or parametric

quantities itis a matrix C_ = of the form (1.92) and in the case of modeling of self-generation

-amatrix C, of the form (1.94);

w; = alf{; (1.104)
0Xr
- square size kN g X kN o matrix;
W= oUr (1.105)
ow

- matrix-column size kN g
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Now we will reveal the content of matrices - and W, .

If equation (1.88) has the form (1.77), then, given that the vector E; is invariant, we

obtain
W)= d;’i{; (@D'Y' +Z, —E;)=wD'S;. + S, , (1.106)
here B B
Syr =ZXL’§; Sy =% (1.107)
r r

- matrices, which are the differential parameters of the harmonic characteristics (1.98);

* d *y % — % — *y ok
a

If equation (1.88) has the form (1.83), then
W:=wD"+S,.; W' =D'X. (1.109)

If equation (1.88) has the form (1.84), then

—

Wy.=wB;D'Sy +S,; W,=B.DY. (1.110)

[0

If equation (1.88) has the form (1.85), then
W =wB;D" +S,,; W:=B/D'X;. (1111

We integrate the differential equation (1.102) by one of the numerical methods from the
value /=0 and initial conditions X* =X to A =1.Obtainedat A =1 the value

—

X~ we accept as a “good” initial approximation to refine the solution of equation (1.90) by the
iterative Newton method according to the formulas

Wi AX =H.:
o (1112ah)
Xy =Xo —AX ),

here / - iteration number; A (- discrepancy of equation (1.90) at X=X "y
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Depending on the form of equation (1.88): (1.77), (1.83), (1.84) or (1.85), the elements
W; and W; of Jacobi matrices W™ are calculated by the formulas, respectively (1.106),
(1.108), (1.109), ( 1.110) and (1.111), and the residual vector - respectively by formulas

1‘7*1 _ oD Yrq +qu(z)_Er : (1.113a)
0 cx”
_,*l _ wD X['(]) +_>ZF(I) _EF ; (1.113b)
) cx”
~+  |@BrD Yry+Zrpy—Ep| (1.113c)
= a ’ |
CX
. |lwB.D'X;+Zrp—E
= r rg}?* r( r . (1.113d)

Note that in the case of calculating the forced oscillations and if the solution of equation

—

(1.90) set the initial values X ; =0 and @ = w, (while the amplitude vectors Y ; and

Z . will be zero and the vector X~ will have avalue X~ = colon(0,®,), where 0"
zero compound vector of amplitudes), the discrepancy vector will take value
H, =—colon(E;.,0) and equation (1.102) - form

LdX"||E;
/4 i OF . (1.102a)

In this case, the dependence (1.100) will be a /i -characteristic (see Section 1.2), which at
h =0 passes through the value of the vector X~ = colon (O*,a)g) and when Ah =1
through the root of equation (1.90).
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1.5.4. Harmonic characteristics and their differential parameters

To calculate by formulas (1.113) the values of the residual vectors when refining the
solutions of equation (1.88) by Newton's method, as well as when calculating the value of the
residual vector (1.97) by numerically integrating the differential equatlon (1.102) reqwres the

value of the vector X calculate the values of vectors Y and Z. . Vectors X Y

and Z; and connect harmonic characteristics (1.98). Their calculation is performed in the
sequence specified by the following formulas:

=F'X;; ' =9'[&1; zZ =2'[x,97']; (1.1144a6,8)
Y. =Gy, Z,.=GZ, (1115 a, 6)

here G°,F" - composite matrices of direct and inverse harmonic transformations;

-

X, ¥, , Z, - vectors formed from the values of the components of the functions
x=Xx[n], y=yI[nl, Z=2Z[n]inthegrid nodes in the period (and if only odd harmonics

are taken into account - then in the half-period), ie from the values of the components of the
vectors (1.68).

. — % — % — % .
Let's call vectors X, y, , Z, composite nodal vectors. They can be formed from the

values of the components of vectors (1.68) in different ways. A possible method of forming

composite nodal vectors is a sequential method:

—

— Xk — —
a, =colon(d,,,..,q,,,.--,4,);

—

a, = COZon(aj(1)aaj(2)a---aaj(m)); (1.116)

a=x,y,z

In this way, the composite nodal vector is formed from simple nodal vectors of the form (1.37),

which belong to the 1st, 2nd, ..., & -th component of the vector @, respectively. In this formation

of composite nodal vectors, the matrices of harmonic transformations £~ and G~ used in
formulas (1.114) and (1.115) have the form
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Fig. 1.3 The structure of the matrix of the form
Ng (17117b
K F

Fig. 1.2 The structure of the
matrix of the form (1.117a)

F* =diag(F,...,F,..,F); (1.117a)
G =diag(G,...,G,...,G). (1.117b)

The matrix F has k the same blocks as the form matrix F (1.39) or (1.44), and the matrix

G" has k the same blocks as the matrix G of the form (1.42), as  shown in Figures 1.2 and
1.3.

The second possible way of forming composite nodal vectors is a parallel method:

8

a =colon (Cll(l)aaZ(l)a"-:ak(l)’ A1(2)s Ay2ysees A(2)s ++- (1.118)
TR al(m),az(m),...,ak(m) )9 a=x,y:Z.

In this formation of the composite nodal vector as its components, the values of the 1st, 2nd, ...,
k -th component of the vector @ in the first node of the period (or half-period, if only odd
harmonics are taken into account) follow, then in the same order the values these components
in the second, third and all other nodes up to the last - m2-th node. As practice has shown, in
the software implementation of algorithms of the differential harmonic method, a parallel method
is @ more expedient way of forming composite nodal vectors. When using it, it is a bit easier to
programmatically implement instant (or half-period) process models.

For a parallel method of forming composite nodal vectors, the matrix has the form (see
Fig. 1.4)

F* =colon(F,...,F,,..,F,), (1.119)
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here F, - block-diagonal matrix of dimensions & x kN, thathas k the same blocks,
each of which is a matrix-string of the form

Hl COS 7], SN 7, COS21] ,\ SIN27] ...

if in each variable the constant component and harmonics of all orders, or a kind are considered

Hcos M, SN,y €083, SN 37, ...

] 2 k
if only harmonics of odd orders are taken into 1 —
aCCOU nt. I nnnnnANNNANNNNnn
The matrix G~ for the case when the composite 2 I | :
node vectors have the form (1.118), is calculated
by the formula
* 2 * *T k Smmmm—— nnnnnnnnnnnnnnd ‘ k
G - @ F 577 5 (1 * 1 20) nnnnnnnnnnnnnnnn A
m
Ng
where ®" - block-diagonal matrix composed of
k identical blocks, each of which is a matrix m IO :
(1.43); F *T_ matrix transposed on the tray to the
matrix (1.119a); Fig. 1.4. Structure of the matrix of
’ the form (1.119)

5; - diagonal matrix of dimension & m, which is single, if numerical methods based

on quadrature formulas of rectangles or trapezoids are used to calculate certain integrals, and
which when using Simpson's formula has the form

4
b))

5 =diag (—, 3

9eeey

wll\)

22
373

wl-b
wl-b
wl-b

22 244
37377737373

here diagonally groups with the same numbers have N g €lements.

The algorithm for calculating harmonic characteristics (1.98) can be expressed by the
following sequence of directives (algorithm 1.4):

a) for a given value X - according to the formula (1.114a) to calculate the value of

the composite nodal vector X, ;

b) by the values of the components of the vector 556* using the dependences
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(1.71) or (1.74) calculate the values of the components of the composite nodal vectors f:

and 26* (instantaneous period or half-period process model);

— —_

c) by formulas (1.115a, b) calculate the values of vectors Y and Z7. .

When calculating the values of the main block ;- of the Jacobi matrix by formulas
(1.106), (1.109), (1.110) or (1.111) it is necessary to calculate the values of matrices (1.107)

according to the given value of the vector X ~ . These matrices consist of k’ blocks, each
of which is a square matrix of dimension N g and have the form:

oy . Oy O
oX,r 0X 0X 1
s |0 M O]
Tollex, 0X ;. oX ||’ (1.121)
afkr 8Ykr Yy
oX,r 0X 0X
|t o
0X\ 1 a)(.jl" X,
A oZ . oZ .
A GX'JF a)?]F 5)2']F _ (1.122)
1r T i
0Ly | Oy . Oy
O0X,r oX O0X,r

By definition, they are complete derivatives of composite amplitude vectors Y "~ and Zr by

the composite amplitude vector X ., Ie, differential parameters of harmonic characteristics

(1.98), so we call them composite matrices of differential harmonic parameters.
By analogy with formula (1.45), the values of matrices (1.121) and (1.122) can be
calculated by formulas
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Sy =G*S, F*; S, =G"S. F", (1.123)

here S;g, S’ - composite matrices of differential harmonic parameters.

If the composite nodal vectors are formed by rule (1.116), then in (1.123) the matrices £~ and
G* have the form (1.117), and the composite matrices of nodal differential parameters
Se» S, consistof &* blocks and have the form

Syel,l Syel,j Syel,k
St = Sysil Syai,j Syeik | > (1.124a)
Sye k,21 Sy@k,j Sye k,k
stl,l Szel,j Szel,k
S* - Szei,l Szei,j Szei,k ’ (1124b)
So6k,1 Sk, S o6k k
and their internal blocks are diagonal matrices of the following form:
. dy, dy, dy,
S, .:dzag(—y’ , )i yeees 4 );
Yet.J de. "D dy (2 dx . 'm
J J J
(1.125 a,0)
S, .:diag(dzi %, 9, ).
L) de. 'O dy @777 gy Tm)
J J J
o . dz, . .
It should be borne in mind that in the general case, the element 7 of the matrix (1.125b) is
X .
J

determined by the formula
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dz, 0Oz a’y1 0z, dy . Do, oz; dy, N

0z

dx, 0y dx, "a dx Oy, dx,

J

y=const (1.126)

Oox i

If the composite nodal vectors are formed by the rule (1.118), then in (1.123) the
matrices £~ and G~ have the form (1.119) and (1.120), and the matrices S;e, S’ are

block-diagonal and contain 72 diagonal blocks - dimensional & matrices (see Fig. 1.5). :

" . dy
S e —dlag(%‘(l) : %‘(2),..

S —dzag(

dy
‘ (m)

di' O’ df‘(z)"“’g‘(m))‘

(1.127a)

(1.127b)

In (1.127b) the diagonal block - the matrix dZ/dX - is determined by the formula

dZ_oz dy o2
di 0y di %

A view of a composite matrix of node parameters
(1.127), in which the relationships between variables in each
of the nodes in the period (or half-period) are compactly
reflected by its diagonal block (in matrices of the form
(1.124), the structure of which corresponds to a sequential
method of forming composite node vectors , this connection
is “smeared” on all its blocks) and makes a parallel method
of forming composite nodal vectors of the form (1.118) more
attractive. This method is chosen when developing the
appropriate procedures for DGM software outlined in
Chapter 2.

The values of the blocks of matrices (1.121) and
(1.122) can be calculated by algorithms 1.2 or 1.3. If

(1.128)
1 2 m
nnn
1 nnn
nn
2 nnn
nnn ¢ K
mnn
k nnn
m nnn

Fig. 1.5. Structure of the
matrix of the form (1.127)

algorithm 1.2 is used, then the calculation of the value of the ij -th block of the matrix S,. is

performed by the formula

oY,
o =—=—=G Sy,
Yr'i,j anF Yei,j

F. (1.129)
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If we use algorithm 1.3, then the calculation of the values of the blocks of matrices
(1.121) and (1.122) is carried out by formulas (1.56). In this case, to calculate the values of the
blocks of these matrices, it is necessary to find by formula (1.57) the coefficients of

decompositions in the Fourier series to the 2#-th harmonic of dependences, the numerical
values of which in the 2 grid nodes are given by diagonal elements of matrices (1.125).

Algorithm for calculating the value of the composite vector of amplitudes X ;. of the

value of the composite matrix of differential harmonic parameters (1.121) or (1.122) for the case
when the values of its internal blocks are calculated by formula (1.56), expressed by the
sequence of such directives (algorithm 1.5):

a) for a given value of the vector X ; according to the directives a) and b) of the

algorithm 1.4 calculate the values of compound node vectors 556* and )7:;
b) from dependencies

dy. dy.

lzl[xl,...,xj,...,xk];

dxj dxj

dz. dz.

; i i [xl,...,xj,...,xk,yl,...,yj,...,yk]; (1.130)
X ; dxj

i, j=1, ...k,

obtained by analytical or numerical differentiation of functions (1.71) and (1.73) or (1.74) and
which are an integral part of the instantaneous period (half-period) model process, calculate the

value of the composite matrix of nodal differential parameters S;@ (orS ;) of the form (1.124)
or (1.127);
c) from the elements of the inner blocks of the matrix S;g (or S ;) form (1.124), which

are diagonal matrices, or from the elements of the diagonal blocks of this matrix, if it has the
form (1.127), to form vectors of forms (1.59) and (1.60);
d) using the directives d) and e) of algorithm 1.3 by formula (1.57) to calculate the values

of vectors V. and V. the form (1.58) for all values of indices 7 and j;

e) by the values of vectors ¥, and V. form (1.58) for all values of indices and by
formula (1.56) to form the values of all elements of all internal blocks of the composite matrix of

differential harmonic parameters S} (orS ).

1.5.5. Algorithms of search of periodic solution

Consider the algorithm for finding the solution of the equation of the form (1.90). Its first
component is the algorithm for numerical integration of the vector differential equation (1.102)

under the initial conditions X~ = X, from h=01to h=1.
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The sequence of operations at each step (substep) in the numerical integration of the
differential equation (1.102) to obtain an approximate solution of equation (1.90) is called
algorithm 1.6. We describe it with a sequence of the following directives:

a) for the value of the vector X" known from the previous step (a, therefore, and X )

according to the directives a) and b) of algorithm 1.4 calculate the values of the vectors 55: and
Vs

b) according to algorithm 1.5 calculate the values of the composite matrices of differential
harmonic parameters Sy~ and S-;

c) by formula (1.103) calculate the value of the matrix W ";

d) by solving (1.102) as a system of linear equations relative to derivatives determine
the value of the vector dX / dh;

e) according to the formula corresponding to the selected method of numerical integration
of the vector differential equation, calculate the value of the increment AX " and the new value

(at the end of the step) of the vector X "

We refine the approximate value of the solution of equation (1.90) obtained by algorithm
1.6 by the iterative method of Newton according to scheme (1.112). The sequence of operations
on one iteration is as follows (algorithm 1.7):

a) for the value of the vector X " known from the previous iteration (and, therefore,
X.) by algorithm 1.4 to calculate the values of the vectors Y, and Z. ;

b) by formula (1.113) calculate the value of the discrepancy vector H:
¢) according to the directives a) - d) of algorithm 1.6 to calculate the value of the matrix

w,
d) by solving (1.112a) as a system of linear equations to calculate the value of the
correction vector AX ™ and by formula (1.112b) - the improved value of the vector X

The algorithm for calculating the instantaneous (for given time points in nodes in the

period or half-period) values of variables y, Z and matricesd—J:, d—i according to the
X X

instantaneous values of the vector X in these nodes implements an instantaneous
mathematical model in the period or half-period of the object - instantaneous model. Directive b)
of algorithm 1.4 and directive b) of algorithm 1.5 (section 1.5.4) implement the appeal to this

model to calculate the values of components of nodal vectors ., Z. and matrices of nodal
differential parameters .S, S7, intime nodes of the grid on the period (or half-period) by the
value of the nodal vector X .

The algorithm for calculating the values of the vectors of amplitudes Y "~ and ZF and

and matrices S, and .S7,.by the value of the amplitude vector X . is a mathematical model
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of the object under study for the amplitudes of the harmonics of its mode coordinates or, in short,
its harmonic model. It is accessed by the algorithms 1.6 and 1.7 described above.

In the computer implementation of the instantaneous period (or half-period) model of the
process, which calculates the values of the components of vectors 3y, Z and matrices

dy/dX, dZ/dX by the value of the vector X in all nodes of the period (half-period), the

following should be kept in mind. For most types of nonlinearities that an oscillatory system can
have, the order of bypassing the nodes does not matter when performing these calculations,
and the nodes of the period (half-period) are bypassed in the order from the first to the last.
However, there are types of nonlinearities when it is necessary to start traversing nodes from
some internal node to the last, and then - from the first to this internal. Examples from the field
of nonlinear electrical engineering can be an instantaneous model in the period of a controlled
valve (thyristor) or nonlinear inductance with the characteristic of magnetization of the hysteresis
form. Problems with such nonlinearities are discussed later in Chapters 3 and 4.

1.5.6. Investigation of the stability of nonlinear oscillations

The oscillation of a physical system is considered stable if, as a result of any single
accidental perturbation, it recovers, ie returns to its previous state. A study of the stability of a
nonlinear oscillation from a mathematical point of view is a study of the stability of the periodic
solution of a nonlinear vector differential equation (ie, a system of first-order nonlinear differential
equations) that describes this oscillation. To do this, the nonlinear vector differential equation is
linearized in the region of the periodic solution, and for the thus obtained linear differential
equation, the corresponding characteristic equation is written. The roots of the latter contain
information about the studied stability [2, 7, 8, 30, 37, 48, 52, 56, 60, 64, 66].

By calculating nonlinear oscillations by the differential harmonic method (as well as by the
harmonic balance method), the periodic solutions of the differential equations are approximated
by Fourier series - the sums of harmonics of different frequencies multiples of the fundamental
harmonic frequency. Due to the random perturbation of the oscillatory process, the amplitudes
of the harmonics of these approximations become variable over time. In the case of stability of
the periodic process after a certain time after perturbation, the values of the amplitudes of the
harmonics should be established and become as they were before the perturbation.

The operation of harmonic algebraization of differential equations (see sections 1.1 and
1.5.2) is performed with the assumption that the coefficients of the Fourier series (harmonic
amplitudes), which approximate the time dependences of the variables, are constant. Therefore,
after differentiation of these approximations during algebraization, the derivatives do not appear
in the obtained expressions. If we consider the coefficients of the Fourier series to be variable,
then due to the differentiation of expression (1.8) we obtain

da dA dA :
=—0+ Y (—%cosvwt— A, vosin vot+

—=—"4
dt dt v=1 dt (1.431)

dA,, .
+—¥Ysinvo t+ A, v cos v t).
dt
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Then the differential equation (1.65) is transformed not into a finite equation (1.83), but into a
new differential equation

— —

oDX, +7Z,=E; . (1.132)

dx;y .
di

In the steady-state periodic regime, the amplitudes of the harmonics are constant, then

dX - / dt =0 and equation (1.132) is reduced to equation (1.83).

In order to study the stability of nonlinear oscillation - the steady-state periodic regime as
the solution of equation (1.132) - it is necessary to linearize this equation at the solution point.

To do this, replace the variable X . with a small increment AX . and equate the ful
differentials of the left and right parts [64]:
dA)? dZ;
o D'AX; +—=L AX7.=0 . (1.133)
dt dx;

I

Given the notation (1.107), this linearized equation takes the form

dAX;

+(@D"+85,.) AX;. =0 . (1.133a)
The characteristic equation corresponding to it can be obtained by the formula [48]
det(pE+wD"+S,.)=0, (1.134)

here p - variable of the characteristic equation and E - a unit matrix of the same size as the
matrix D"

If the solvable differential equation has the form (1.64), then the linearized equation for
small increments of the components of the amplitude vectors is as follows

Syfdif +(@D" S} +8;) AX7.=0 (1.135)

and its characteristic equation can be obtained by the formula
det(pSy +@D*Sy- +S,-)=0. (1.136)

By revealing the determinants in formulas (1.134) or (1.136) the characteristic equations
are reduced to the traditional form of the algebraic equation
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a,p" +a,p +..+a,_p+a =0 (1.137)

and expressions for its coefficients «,, a,, ... ,a, .are obtained.

As is known [2, 7, 8, 30, 48, 52, 56], the necessary condition for the asymptotic stability
of the solution is satisfied when all the coefficients of the characteristic equation of the form
(1.137) are valid and greater than zero (nonnegative). Thus aperiodic disturbance of stability is
impossible, disturbance of stability can have only oscillatory character in the form of so-called
self-shaking.

Sufficient stability conditions formulate, for example, Hurwitz criteria (also known as
Rauss-Hurwitz criteria): it is necessary that the values of all Hurwitz determinants, the
determinant of the Hurwitz matrix formed by a special rule from the coefficients of the
characteristic equation, and its diagonal (main) minors) were greater than zero.

From the analysis of Hurwitz criteria it is known [48] that when, starting from some
stable region, to change the parameters of the system, then, in case of deterioration of the
stability of the regime, the first to change their signs last (72) or (n —1) last Hurwitz inequality.
In the first case, this occurs when the sign changes the free term of the characteristic equation,
and this means an aperiodic violation of stability. If the sign of the penultimate changes the
(n —1)Hurwitz inequality, then there is a change in the sign of the real part of the complex-
conjugate pair of roots of the characteristic equation, and this means a violation of stability in the

form of self-oscillation.
The free term of the characteristic equation (1.134) is expressed by the formula

a, =det(wD" +S,) (1.138)

and for the characteristic equation (1.136) - by the formula
a, =det(wD"Sy, +S;) . (1.139)

When calculating the forced oscillations and obtaining the approximate value of the
periodic solution by the method / -characteristics, ie numerical integration of the differential
equation (1.102) from the initial conditions at zero value of the composite vector of amplitudes
of system variables, to analyze the aperiodic stability free member of the characteristic equation.

Since the /A -characteristic begins with the initial stable solution (absence of
oscillations), when moving along it (the forcing force increases) the change of the sign of the
free member a, from plus to minus means the transition to the aperiodically unstable part of
the characteristic, and the subsequent change of the sign from minus to plus - to restore
aperiodic stability.

For the analysis of other types of loss of stability (for example - self-oscillation) at
numerical integration of the differential equation (1.102) it is necessary to trace not only a sign
of a free term (1.138) or (1.139) of the characteristic equation, but also to analyze other
Hurwitz inequalities concerning the characteristic equation (1.134). or (1,136).

As we can see, the values of the matrices of differential harmonic parameters S ;F and

S ;Fand are used to analyze the stability of nonlinear oscillations calculated by the differential
harmonic method. In the analysis of stability, their use is organic, because they, by definition,
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are associated with infinitesimal increments of harmonic amplitudes. Their values, especially
calculated in the last iteration of the solution refinement, fairly accurately reflect the relationships
between the harmonics in the vicinity of the solution, where the stability is analyzed. It is also
important that it is not necessary to additionally calculate the values of the matrices of differential
harmonic parameters for the analysis of the stability of the solution, because they are calculated
in the process of finding the solution.

1.5.7. If there are more then one periodic solutions

Among the set of nonlinear vector differential equations of the form (1.64) - (1.67), the
periodic solutions of which are sought, there are equations which at certain values of their
parameters can have several periodic solutions. If they are found by the algorithms described
above, solving nonlinear systems of finite equations whose amplitudes of harmonics are
unknown, then when obtaining the first approximation by calculating the /% —characteristic -

numerical integration of the differential equation of the form (1.102) - there are difficulties.
They are due to the fact that for such cases, depending on the parameter 7, the components

—

of the vector X, if represented
graphically, are ambiguous, in particular -
loop-shaped (see Fig. 1.6, there y — one of

the components of the vector X *). They
pass through points that are special: at
these points the absolute values of the

components of the derivative dX / dh are
infinitely large.

As a result, numerical integration to
obtain the dependence (1,100) when
approaching such points (for example, to

points A=A, or h=h, in Fig. 1.6) becomes impossible. Such difficulties in numerical

integration can be avoided if we use the method described in [64] and called inversion of the
system of differential equations.

The essence of inversion is that in the course of numerical integration when
approaching a particular point, when the absolute values of the derivatives of the independent

variable /1 of all other variables (ie - all components of the vector X *) grow strongly (at a
particular point they are equal to infinity), the independent variable # it is necessary to make

dependent and to make any of the components of the vector X ) independent. At this special
point, the derivatives of the new independent variable of all other quantities will be zero, and in
relation to this new independent variable, the point is no longer special.

Inversion - the replacement of an independent variable - is performed not at the most
specific point, but when approaching it. After inversion, numerical integration continues, but only
after this new independent variable. In this case, the initial value of the step can be taken as
equal to the value of the increment that this variable received in the previous step, when it was
still a dependent variable.The new independent variable retains this status as long as the
absolute values of the derivatives of the other variables behind it decrease. As soon as they
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read to grow, it indicates the possible presence of a special point in front of this variable, and
therefore it is necessary to return the status of the independent variable to the parameter /.
This alternate exchange of the status of the independent variable between the parameter /1
and one of the components of the vector X " eliminates the problem of passing special points.

Consider which of the components of the vector X itis advisable to choose the one
that is given the status of an independent variable during inversion. Theoretically, it can be any

component of the vector X However, if we talk about the solution of the nonlinear vector finite
equation of the form (1.90), which is a harmonic reflection of the nonlinear vector differential

equation of one of the forms (1.64) - (1.67), then the amplitude vectors X, ..., X as

components of the vector X" most accurately calculate first-order harmonics. when replacing
certain integrals with sums, their half-waves account for the largest number of nodes (see
Section 1.3). Therefore, it is expedient to choose the cosine or sine component of the first
harmonic of any of the vectors of amplitudes included in the vector X Let this be the first
amplitude vector corresponding to the variable x;. In it it is expedient to take the second
component, then in case of consideration of constant components and harmonics of all orders
it will be a cosine component of amplitude of the first harmonic and in case of consideration only

odd harmonics - a sine component of amplitude of the first harmonic.
The algorithm for inverting the vector differential equation (1.102) is significantly

simplified if the independent variable / is added to the vector of variables X " as its additional
component. In this case, equation (1.102) must be added to the equation

dh/dh=1. (1.140)

At each step of numerical integration, the values of the derivatives of the vector X" by
the variable / are calculated by solving (1.102) as a system of linear equations with respect to

X’ / dh and the value of the derivative dh/dh by equation (1.140). Let at some value they
are as follows:

dX,,/dh=a; dX,,/dh=b; dX,,/dh=c;...;dh/dh=1. (1.141)

If there was an inversion (the parameter /1 became a dependent variable, and the new non-
dependent variable - the amplitude X,_.,), it is necessary to calculate the values of the

derivatives of all variables for this new independent variable. They can be calculated from the
values (1.141) taking into account the formulas

dX,, dX,, dh _dX, /dX,,

dX,, dh dX,, dh/ dh
dX

lel __

Xm cl

b

>
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Xmsl _ Xmsl . dh — Xmsl Xmcl .

5

dx,., a.’h dX,, dh | dh (1.142)
dh _dh dh :/de
dx,, dh dX,, dh
These values will be as follows:
Xy _a. dXy o AN _c. L dh 1 (1.143)

b b b A b

Xmcl b Xmcl Xmcl b Xmcl b

The inversion algorithm allows the numerical integration of differential equations to obtain
the dependences of the form (1.100), regardless of how many loops have graphs illustrating

these dependencies, and how many special points on them. Thus, moving along the /2 —

characteristic (that is, along the dependencef( =X *[h]), we go through all the periodic

solutions that exist on this trajectory, regardless of which of them are stable and which are
unstable.

Finally, the following two remarks should be made when concluding the inversion
algorithm, which allows the detection of periodic solutions if there are more than one.

1. If the system of differential equations has more than one periodic solution, then to
detect them by the proposed method, it is necessary to set the "correct” maximum value of the

parameter /2 when calculating the /1 — characteristic. Let's take another look at fig. 1.6: the :
h — characteristic becomes obvious only after the completion of the numerical integration of the

differential equation of the form (1.102). In the course of integration, it manifests itself gradually
- step by step, and if at its receipt such as it is shown in fig. 1.6, given the maximum value of the

parameter /. {/1,, we would get only the upper part of the curve and would not find that it

further turns back and spins in the form of a loop and that for all values /4 in the interval
h,(h{h, the system of differential equations has three periodic solutions.

2. It is obvious that the advance along the / — characteristic using the inversion
algorithm allows to reveal all periodic solutions of the considered vector differential equation only
on the condition that this characteristic is continuous. In all the technical problems that the author
of this book had to consider, the continuity of /1 — characteristics was confirmed.

If when solving some problems of calculating nonlinear oscillations it turns out that the
h —characteristic is not continuous, then for such cases we should look for other ways to find

all roots (if the root is not one) of a vector finite equation, which is a harmonic reflection of the
solvable vector differentialtion equation.
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Chapter 2
SOFTWARE OF THE DIFFERENTIAL HARMONIC METHOD

2.1. Structure of the software of differential harmonic method

It should be clear to the reader who has read the previous chapter of this book that the
differential harmonic method (DHM) as a tool for calculating nonlinear oscillations (that is, finding
periodic solutions of nonlinear systems of differential equations describing these oscillations) is
not intended for use in "manual" (non-automated) calculations. His niche is computer modeling
of nonlinear oscillations, that is, with the use of a computer, in particular, a personal computer
(PC) or a laptop.

The volume of preparatory work for modeling is significantly minimized if you can use pre-
prepared special software. We have developed such support for DHM, and its main elements
are presented in this and the following chapters. The use of the software of the differential
harmonic method makes it possible to create any program for modeling and calculation of
nonlinear oscillations in one or another nonlinear system using the proposed method from two
blocks of software components, as shown in Fig. 2.1.

| Main : —> Block 3 «—
.| program | A S |
i : i v v i
. | Block 1 Block4 | i
! OUTP -i processing ! ! !
i and fixation of i i i
' | tesults ! ! Y !
: < : Block 2 :
i Z Z Block i
! MODEL - ! ! ock !
i instant model P i i 4 i
: during the period : : :
! (half-period) ; & 4 )
’ : | SOFTWARE OF DHM !
i Ablock of user software . bommmmmmmmmmoomeoooooooes !
i components

Fig.2.1. Structural diagram of the generalized program
calculation of nonlinear oscillations using DHM software

These are the following blocks:

a) a block of ready-made software components (external routines, procedures) of the DHM
software (hereinafter — DHM-S), which includes Blocks 1 - 5;

b) a block of user software components that he creates exclusively for this specific task.
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All basic operations of the method are implemented in the procedures of blocks 1 - 5 of
the DHM-S (they can be considered as macrooperations - calculation of the values of the
amplitude vectors by the values of the nodal vectors, the values of the nodal vectors by the
values of the amplitude vectors, the values of the matrices of differential harmonic parameters,
integration of the system of differential equations, the variables of which there are amplitude
vectors, etc.).

User software components implement what individualizes each specific task in the field of
modeling nonlinear oscillations.

In this chapter, we will consider the software components included in Blocks 1 - 4 of the
DHM-S. The program components of Block 5 of the DHM-S are considered in Chapter 3.

All software components of the DGM-S and illustrative programs given in the book are
written in the Fortran-90 algorithmic language [43, 69]. They can be translated by any compiler
configured for this version of Fortran and all its younger versions, for example - the compiler of
the integrated development environment ( IDE) Microsoft Developer Studio.

The choice of programming language during the development of DGM-S was determined
by the author's experience and preferences. The Fortran-90 version of the Fortran algorithmic
language was popular at the end of the last century among scientific and scientific and technical
specialists. Although in recent years the family of algorithmic languages has been replenished
with new effective languages (Pascal, C++, Python, etc), Fortran, thanks to its simplicity, ease
of learning and close connection with the language of mathematical analysis, has not gone out
of use among scientists and engineers. it is intensively developed: its versions Fortran-95,
Fortran-2003 [43, 70], Fortran-2008 [71], Fortran-2018 [72] are known, which are supported by
many IDEs.

While preparing the book for translation into English, the author had the idea to translate
the DHM-S into the C++ language, and a certain part has already been translated, but in the
process of translation, the author once again made sure that Fortran is much more effective for
those tasks for which DHM is intended.

If the sympathies of the reader of this book are still directed towards another algorithmic
language, then he will have to translate the program components of DHM-S written in Fortran
language into this other algorithmic language.

Some routines from special libraries could be used in the DHM-S, for example, a routine for
solving systems of linear equations from the NAG Mark 20 library for Fortran-90 [43] or from any
other similar library. However, the DHM-S proposed in this book is quite autonomous: when
solving many problems in the field of nonlinear oscillations, at least those considered in this
book, it was possible to do without the use of third-party subroutines.

This chapter provides complete listings (printouts) of software components of DHM-S
software, and in the following chapters - printouts of user software components in illustrative
programs of test tasks and examples with their input numerical files."

1 The user can avoid the tedious work of entering the text of software modules and data using the keyboard into
the memory of his PC and searching for possible errors when entering them manually: copies of these software
products can be sent to the reader if they are ordered at the author's e-mail address: gl.lev42@ gmail.com .
At the same address, you can order the version of the DGM software in the C++ language, modified for the
Dev C++ 5.11 integrated environment (platform).
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2.2. Program components of DHM-S

The software components of the DHM-S presented below in this chapter are grouped into
five software blocks, as shown in Fig. 2.1. A library of subroutines for numerical modeling by the
differential harmonic method of nonlinear oscillations can be created from these program blocks.

2.2.1. The first program block

The first block of DHM-S components (let's call it Block 1) contains those procedures that
implement operations using matrices of harmonic transformations. These are six procedures:
SNCS, VGVS, VSVG, VSVGP, KVGVS and KVSVG. The ability of these procedures to access
matrices of harmonic transformations is implemented here using the module function. For this,
the block contains the ARRAY module, which makes the arrays F, G and GNP, which store the
values of the matrices of harmonic transformations, available to these procedures, in other
words, these arrays within the block have the status of global.

To compile the software components of this block, it is advisable to download them all
together (in the form of, for example, a single Block1.for file), so as not to cause, in the case of

separate compilation of each software component of the block, compiler messages such as
“Cannot find module Array”.

2.2.1.1. Module ARRAY
Text of module:

Module Array
1-- The module with description of arrays F, G and GNP, that store
1-- the matrices of harmonic transformations

I-- that should be available to all procedures of this block
!

implicit none

real,dimension(25,150)::F,G

real,dimension(49,150)::GNP
!

I-- The dimension of the arrays set here allow you to set to the number N of the highest harmonic
1-- the maximum value 12

I-- (if are taken into account constant components and all harmonics)

I-- or the maximum value 23 (if only odd harmonics are taken into account).

I-- With larger values of N, the sizes of the arrays in module must be increased.

end module Array

The module Array consists only of a descriptive part. It describes three arrays - F, G and
GNP, intended for storing values of matrices of harmonic transformations of the forms (1.39) or
(1.44) and (1.42). Their value is calculated by the SNCS procedure included in Block 1 (it is
described further in the next subsection). The values of these matrices are available to all other
procedures of this block, due to the presence of the Use Array operator in each of them, and thus
these matrices within the first program block receive the status of global.

The dimensions of the F, G and GNP arrays in this block are set in such a way that it is
possible to set the maximum order of harmonics up to 12, taking into account constant
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components and harmonics of all odd and even orders, and up to 23, taking into account
harmonics of only odd orders. if it is necessary to take into account harmonics with higher orders,

the dimensions of these matrices in the Array module must be increased.

These dimensions can be reduced, but at the same time they will become smaller than

12 or 23, respectively, the maximum orders of harmonics that can be set

2.2.1.2. Procedure SNCS

Text of the procedure:

Subroutine SNCS(IG,N,NG,NG1,M)
I-- The procedure for calculating the dimensions M,NG,NG1 and the
l-- values of the matrix F, G and GNP of harmonic transformations,

1-- which are stored in the module Array
!

Use Array

implicit none
real::SM,DE,ETA,E
real,parameter::P1=3.14159
integer,intent(in)::IG,N
integer,intent(out)::NG,NG1,M
integer::i,j

l-- 1G - control varoiable:

l-- if =0, then are taken into account constant components and all harmonics
l-- if =1, then are taken into account only odd harmonics

I-- N - the highest order of harmonics taken into account

- NG= 2*N+1 (at IG=0) and N+1 (at IG=1)- the number of rows of matrices Fand G
l-- NG1=4*N+1(at 1G=0) and 2*N+1 (at IG=1)- the number of rows of matrix GNP
1-- M - the number of nodes per period (at IG=0) or half-period (at 1G=1)

I-- and the number of columns of matrices F, G and GNP

if(1G.eq.1.0r.1G.eq.0) goto 1; goto 5
1 if(IG.eq.0.and.N.gt.12) goto 10
if(1G.eq.1.and.N.gt.23) goto 20
if(1G.eq.0) then
NG=2*N+1; NG1=4*N+1
else
NG=N+1; NG1=2*N+1
end if
M=6*NG; if(M.le.24)M=24; SM=2./M
DE=PI/M; if(IG.eq.0) DE=2.*DE
if(IG.eq.1) goto 2
l-- when are taken into account constant components and all harmonics
Do j=1,M
ETA=DE*(j-1); F(1,j)=1.; G(1,j)=.5*SM
GNP(1,j)=.5*SM
do i=2,NG,2
E=ETA*i/2.; F(i,j)=cos(E); F(i+1,j)=sin(E)
G(i,j)=cos(E)*SM; G(i+1,j)=sin(E)*SM
end do
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doi=2,NG1,2
E=ETA*i/2.
GNP(i,j)=cos(E)*SM; GNP(i+1,j)=sin(E)*SM
end do
end do; goto 3
l---- when are taken into account only odd harmonics
2 Doj=1,M
E=DE*(j-1); GNP(1,j)=.5*SM
do i=1,NG,2
F(i,j)=cos(E*i); F(i+1,j)=sin(E*i)
G(i,j)=F(i,j)*SM; G(i+1,j)=F(i+1,j)*SM
end do
doi=2,NG1,2
GNP(i,j)=cos(E*i)*SM; GNP(i+1,j)=sin(E*i)*SM
end do
end do
3 return
I-- A message to the console in the event of an abnormal termination
5 write(*,*)' You specified IG that is neither 0 or 1'
stop
10 write(*,*)' At1G=0you set N>12'
write(*,*)' At N>12 need to resize'
goto 30
20 write(*,*)' At1G=1you set N>23'
write(*,*)' At N>23 need to resize'
30 write(*,*)' of matrices F, G and GNP'
write(*,*)' in descriptive part of the module Array'
stop
end Subroutine SNCS

The SNCS procedure is designed to calculate the dimensions and values of harmonic
transformation matrices of the form (1.39) or (1.44), of the form (1.42) and (see formula (1.57) ),
which are stored by the arrays F, G and GNP described in the Array module. To access these
arrays, the procedure has a Use Array operator.

The procedure has two input parameters - 1G and N.

The first input parameter I1G is a control variable that can have a value of 0 or 1.
Assigning it a value of 0 means that constant components and harmonics of even and odd
orders are taken into account in the calculations for all coordinates of the modeled system, and
assigning a value of 1 means that only odd harmonics are taken into account orders The second
input parameter of the procedure is the variable N - the highest harmonic order taken into
account; when 1G=1, its value can only be an odd integer.

. The output parameters of the procedure are the arrays F, G and GNP, which store the
values of the matrices of harmonic transformations, and the dimensions NG, NG1 and M of
these matrices.

When 1G6 =0, the number of NG rows of matrices of the form (1.39) or (1.44) and matrices
of the form (1.42), that is, the used rows of arrays F and G, is determined by the formula

N,=2n+1, (2.1)
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and the number of rows of the matrix G, included in the formula (1.57), that is, the rows of the
GNP array used, according to the formula

Ng1:4n+1. (2.2)
In these formulas, » is the highest order of the harmonics taken into account.

Note that the matrix [ is stored in memory (array F) in transposed form.
When IG = 1, the number of rows of matrices /' and G (used rows of arrays F and G) is
determined by the formula

N, =n+l (2.3)

g
and the number of rows of the matrix G, (used rows of the GNP array) - according to the

formula
N, =2n+l. (2.4)

g

The number of columns of arrays F, G and GNP , used to store matrices of harmonic
transformations /', G and G,, (the same - the number of nodes per period at I1G =0 or
the number of nodes per half period at IG = 1) is determined by the formula

M=6N,. 25)

At the same time, there are at least six nodes per half-wave of the highest-order harmonic.

It is clear that the number of rows and columns calculated by formulas (2.1) - (2.5) should
not exceed the size of the F, G and GNP arrays defined in the Array module. Therefore, the
set value of the variable » is controlled by the procedure, and if the value exceeds the
maximum allowable (12 at IG = 0 and 23 at IG = 1), the calculations are stopped with a
corresponding message on the monitor

Next, the SNCS procedure calculates the values of the matrices F', G and GZn ,

which are described in the Array module as arrays F, G and GNP and are available to this
procedure thanks to the Use Array statement.

The values of matrices F' and G are calculated when 1G = 0 according to formulas
(1.39) and (1.42) and when IG = 1 according to formula (1.44) and modified formula (1.42). The

value of the matrix G, (GNP array) is calculated using the same formulas as the matrix G'. It

differs from the matrix G only in that it has not NG, but NG1 rows, because when calculating
the values of the matrices of differential harmonic parameters (see VSVGP and GRPAR
procedures below), it is necessary to expand the function of the distribution of differential
parameters to the 2 - n-th harmonic into a Fourier series.

The SNCS procedure must be called to execute at the beginning of the calculation, and
the values of the matrices F, G and GNP calculated by it remain unchanged until the end of the
calculation, unless it changes the number of harmonics considered. If the number of harmonics
taken into account changes, the SNCS procedure must be called again for execution at each
change.
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2.2.1.3. Procedure VGVS

Text of procedure:

Subroutine VGVS(VG,VS,NG,M)
1-- The procedure for calculating the value of the nodal vector VS with
l-- size M by the value of the amplitude vector VG with size NG
I-- M - the number of nodes per period (at 1G=0) or half-period (at 1G=1)
! -- and the number of columns of matrix F
I-- NG - the number of elements of a simple vector of amplitudes

Use Array
implicit none
integer,intent(in)::NG,M
real,dimension(NG),intent(in)::VG
real,dimension(M),intent(out)::VS
integer::i,j

Do j=1,M

VS(j)=0.
do i=1,NG
VS(j)=VS(j)+VG(i)*F(i,j)

end do

end do

return

end subroutine VGVS

The VGVS procedure is intended for performing calculations according to formula (1.38)
- calculating the value of the nodal vector based on the value of the amplitude vector. The value
of the matrix F required for the operation is available from the Array module.

Before calling the procedure, the formal parameter VG (vector of amplitude) must have a
numerical value, and the SNCS procedure must first run (so that the matrix £, the value of
which is stored in the F array, has a value).

2.2.1.4. Procedure VSVG

Text of procedure:

Subroutine VGVS(VG,VS,NG,M)
1-- The procedure for calculating the value of the amplitude vector VG
l-- with size NG by the value of the nodal vectorof VS with size M
1-- M - the number of nodes per period (at IG=0) or half-period (at 1G=1)
I--  and the number of columns of matrix G
I-- NG - the number of elements of a simple vector of amplitudes

Use Array
implicit none
integer,intent(in)::NG,M
real,dimension(NG),intent(in)::VG
real,dimension(M),intent(out)::VS
integer::i,j

do j=1,M

VS(j)=0.

do i=1,NG
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VS(j)=VS(j)+VG(i)*F(i,j)
end do
end do
return
end subroutine VGVS

The VSVG procedure is designed to perform calculations according to formula (1.41) -
the value of the amplitude vector is calculated from the value of the nodal vector. The value of
the matrix G required for the operation is available from the Array module.

Before calling the procedure, the formal parameter VS (nodal vector) must have a
numerical value and the SNCS procedure must be executed before that.

2.2.1.5. Procedure VSVGP

Text of procedure:

Subroutine VSVGP(VS,VG,NG1,M)
I-- The procedure for Fourier series expansion of the parameter distribution function VS(M)
I-- for calculating the matrix of differential harmonic paramrters
I-- M - the number of nodes per period (at 1G=0) or half-period (at 1IG=1)
- and the number of columns of matrix GNP

Use Array
implicit none
integer,intent(in)::NG1,M
real,dimension(NG1),intent(out)::VG
real,dimension(M),intent(in)::VS
integer::i,j
do i=1,NG1
VG(i)=0.
doj=1,M
VG(i)=VG(i)+VS(j)*GNP(i,j)
end do
end do
return
end subroutine VSVGP

The VSVGP procedure is used when calculating the values of the matrices of differential
harmonic parameters and performs calculations according to formula (1.57) - decomposes the
distribution function on the period (or half-period, when only odd harmonics are taken into
account) of the differential parameters into a Fourier series. The value of the GNP matrix
required for the operation is available from the Array module by using the Use Array statement.

Before calling the procedure, the formal parameter VS (nodal vector, which specifies the
distribution on the period or half-period of the differential parameter) must have a numerical
value and the SNCS procedure must be executed.
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2.2.1.6. Procedure KVGVS

Text of procedure:

Subroutine KVGVS(K,VG,NG,NK,VS,M,MK)
1--  TMpoyedypa nepemesopeHHA cKnadeHo20 K-kpamHo2o eekmopa amnnimyod VG po3mipy NK
1-- e cknadeHuii K-kpamHuli ey3noeuii eekmop VS po3mipy MK
lI-- M - KinbKicmb 8y3sie Ha nepiodi(npu IG=0) i Hanienepiodi
I--  (npu IG=1), 8oHa X3« - KinbKkicmb cmoenyie mampuys F, G i GNP
I-- NG - po3mipHicmb npocmozo eekmopa amnnaimyad

Use Array
implicit none
integer,intent(in)::K,NG,NK,M,MK
real,dimension(NK),intent(in)::VG
real,dimension(MK),intent(out)::VS
integer::i,j,iN,jM, L
do i=1,K
iN=(i-1)*NG
doj=1,M
iM=(j-1)*K+i; VS(jMm)=0.
do L=1,NG
VS(jM)=VS(jM)+VG(L+iN)*F(L,j)
end do
end do
end do
return
end subroutine KVGVS

The procedure performs calculations according to the formula (1.114a) - based on the
value of the composite amplitude vector, it calculates the value of the composite nodal vector,
which is formed here according to the formula (1.118). The value of the matrix F required for
the operation is available from the Array module by using the Use Array statement.

Before calling the procedure, the formal parameter VG (composite vector of amplitudes)
must have a numerical value and the SNCS procedure must work (that is, the values of the
matrices of harmonic transformations are calculated).

2.2.1.7. Procedure KVSVG

Text of procedure:

Subroutine KVSVG(K,VS,M,MK,VG,NG,NK)

I-- The procedure for calculating the value of the composite vector

I-- of amplitudes VG with size NK=NG*K

I-- by the value of the nodal composite vector VS with size MK=M*K

I-- M - the number of nodes per period (at IG=0) or half-period (at 1G=1)
I--  and the number of columns of matrix G

I-- NG - the number of elements of a simple vector of amplitudes

Use Array

implicit none
integer,intent(in)::K,NG,NK,M,MK
real,dimension(NK),intent(out)::VG
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real,dimension(MK),intent(in)::VS
integer::i,j,iN,iK,L,LN
do i=1,K
iN=(i-1)*NG; iK=K-i
do L=1,NG
LN=L+iN; VG(LN)=0.
doj=1,M
VG(LN)=VG(LN)+VS(j*K-iK)*G(L,j)
end do
end do
end do
return
end subroutine KVSVG

The KVSVG procedure performs calculations according to the formula (1.115a) or
(1.115b) - based on the value of the complex nodal vector, it calculates the value of the complex
vector of amplitudes. The value of the matrix G required for the operation is available from the
Array module by using the Use Array statement.

Before calling the procedure, the formal parameter VS (composite nodal vector) must have
a numerical value and the SNCS procedure must be executed.

2.2.2. The second program block

The second block of DHM-S components (Block 2) contains six procedures: OMA, OMV,
OMAB, OMVB, GRPAR and GRMAT. These are procedures that implement operations with the
differentiation matrix D of the form (1.16) or (1.17) and calculate the values of the matrices of
differential harmonic parameters (1.56) and (1.107).

The procedures of this block do not require access to matrices of harmonic
transformations.

2.2.2.1. Procedure OMA

Text of the procedure:

Subroutine OMA(IG,A,B,NG,0M)
l--- Procedure for multiplying circular frequency OM and matrix D of order NG
1-- by the matrix A of order NG
- 1G - control variable:
l-- if =0, then constant components and harmonics of all orders are taken into account
l-- if =1, then only harmonics of odd orders are taken info account

Implicit none
integer,intent(in)::IG,NG
real,intent(in)::OM
real,dimension(NG,NG),intent(in)::A
real,dimension(NG,NG),intent(out)::B
integer::i,j
real::C
if(1G.eq.1) goto 1
I-- when const.components and harmonics of all orders are taken into account
do j=1,NG
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B(1,j)=0.
do i=2,NG,2
C=A(i,j)
B(i,j)=A(i+1,j)*OM*i*.5; B(i+1,j)=-C*OM*i*.5
end do
end do; goto 2
l--- when only harmonics of odd orders are taken info account
1do j=1,NG
do i=1,NG,2
C=A(i,j)*OM*i
B(i,j)=A(i+1,j)*OM*i; B(i+1,j)=-C
end do
end do
2 return
end subroutine OMA

The OMA procedure is designed to perform the operation of multiplying the
product of the circular frequency @ and the differentiation matrix D of the form (1.16) or
(1.17) by a square matrix, just as it is performed in formula (1.27).

When calling this procedure, the OM, NG and A parameters must have numeric values.

The result of this operation is the assignment of the product @A to the matrix B .

2.2.2.2. Npouenypa OMV
Text of the procedure:

Subroutine OMV(IG,V,V1,NG,0M)
- Procedure for multiplying circular frequency OM and matrix D of order NG
I1-- by the vector of amplitudes V with the number of elements NG
- IG - control variable:
l-- if =0, then constant components and harmonics of all orders are taken into account
1-- if =1, then only harmonics of odd orders are taken info account

Implicit none
integer,intent(in)::IG,NG
real,intent(in)::OM
real,dimension(NG),intent(in)::V
real,dimension(NG),intent(out)::V1
integer::i
real::C
If(1G.eq.1) goto 1
I-- when const.components and harmonics of all orders are taken into account
V1(1)=0.
do i=2,NG,2
C=0M*V(i)*i*.5
V1(i)=OM*V/(i+1)*i*.5; V1(i+1)=-C
end do; goto 2
l--- when only harmonics of odd orders are taken info account
1doi=1,NG,2
C=0OM*V(i)*i
V1(i)=OM*V(i+1)*i; V1(i+1)=-C
end do
2 return
end subroutine OMV
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The OMV procedure is designed to perform the operation of multiplying the product of
the circular frequency @ and the differentiation matrix D of the form (1.16) or (1.17) by the
vector of amplitudes of the form (1.13), just as it is performed in the formula (1.15).

When calling this procedure, the OM, NG and V parameters must have numeric values.

The result of this operation is the assignment of the product @DV to the vector v1.

2.2.2.3. Procedure OMAB

Text of the procedure:

Subroutine OMAB(IG,A,B,NG,K,NK,0M)
I-- Procedure for multiplying the matrix A of order NK=NG*K
I-- by circular frequency OM and the composite matrix DC on the left (B=OM*DC*A)
I-- NG - the number of elements of simple vector of amplitudes
1-- IG - control variable:
1-- if =0, then const. components and harmonics of all orders are taken into account
I-- if =1, then only harmonics of odd orders are taken info account

Implicit none
integer,intent(in)::IG,NG,K,NK
real,intent(in)::OM
real,dimension(NK,NK),intent(in)::A
real,dimension(NK,NK),intent(out)::B
integer::i,j,jK,iK,i1,j1
real::C
If(IG.eq.1) goto 1
1-- when const.components and harmonics of all orders are taken into account
doil=1,K
iK=(i1-1)*NG
do j1=1,K
jK=(j1-1)*NG
do j=1,NG
B(1+iK,j+jK)=0.
do i=2,NG,2
C=A(i+iK,j+jK)
B(i+iK,j+jK)=OM*A(i+iK+1,j+jK)*i/2.
B(i+iK+1,j+jK)=-C*OM*i/2.
end do
end do
end do
end do; goto 2
l--- when only harmonics of odd orders are taken info account
1doi1=1,K
iK=(i1-1)*NG
doj1=1,K
jK=(j1-1)*NG
do j=1,NG
do i=1,NG,2
C=A(i+iK,j+jK)*OM*i
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B(i+iK,j+jK)=A(i+iK+1,j+jK)*OM*i
B(i+iK+1,j+jK)=-C
end do
end do
end do
end do
2 return
end subroutine OMAB

The OMAB procedure is designed to perform the operation of multiplying the product of
the circular frequency @ and the complex differentiation matrix D of the form (1.78) by a
square matrix, just as it is performed according to the formula (1.106).

When calling this procedure, the parameters OM, NG, K, NK and A must have numeric

values. The result of this operation is the assignment of the product D" A to the matrix B.

2.2.2.4. Procedure OMVB

Text of the procedure:

Subroutine OMVB(IG,V,V1,NG,K,NK,OM)
1-- Procedure for multiplying the circular frequency OM and composite matrix D
.- of order NK=NG*K by composite K-fold vector of amplitudes
I--  with the number of elements NK=NG*K (V1=OM*V*D)
l-- IG - control variable:
1-- if =0, then const.omponents and harmonics of all orders are taken into account
I-- if =1, then only harmonics of odd orders are taken info account

Implicit none
integer,intent(in)::IG,NG,K,NK
real,intent(in)::OM
real,dimension(NK),intent(in)::V
real,dimension(NK),intent(out)::V1
integer::i,j,iK
real::C
If(IG.eq.1) goto 1
I-- when const. components and harmonics of all orders are taken into account
do i=1,K
iK=(i-1)*NG; V1(1+iK)=0.
do j=2,NG,2
C=V(j+iK)*j*OM*.5
V1(j+iK)=V(j+iK+1)*j*OM*.5
V1(j+iK+1)=-C
end do
end do; goto 2
I--- when only harmonics of odd orders are taken info account
1doi=1,K
iK=(i-1)*NG
do j=1,NG,2
C=V(j+iK)*j*OM
V1(j+iK)=V(j+iK+1)*j*OM
V1(j+iK+1)=-C
end do
end do
2 return
end subroutine OMVB
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The omvB procedure is designed to perform the operation of multiplying the product of
the circular frequency @ and the complex differentiation matrix D of the form (1.78) by the
complex vector of amplitudes of the form (1.79), just as it is performed according to the formula
(1.77).

When calling this procedure, the parameters OM, NG, K, NK and V must have numeric

values. The result of this operation is the assignment of the product oDV to the vector v1.

2.2.2.5. Procedure GRPAR

Text of the procedure:

Subroutine GRPAR(IG,SY,NG,SYC,M,NG1)
- The procedure for calculating the value of the matrix SY
- of order NG of differential harmonic parameters
I-- by value of diagonal matrix of parameters in nodes, which is given
1-- by the vector SYC with the number the elements M
- 1G - control variable:
l-- if =0, then constant components and harmonics of all orders are taken into account
l-- if =1, then only harmonics of odd orders are taken info account
I-- M - the number of nodes per period (at IG=0) and per half-period (at 1G=1),
l-- and number of column of matrices F, G and GNP
I-- NG - the number of elements of simple vector of amplitudes

Implicit none
integer,intent(in)::IG,NG,M,NG1
real,dimension(M),intent(in)::SYC
real,dimension(NG,NG),intent(out)::SY
real,dimension(NG1)::GL
integer::i,j,i1,i2,ij,ji,j1,jk,jk1,jk2,j11,jii,jil1,ji2
I--  GL- working vector with number of elements NG1
I NG1=2*N+1 (at IG=1) and 4*N+1 (at 1G=0)

Call VSVGP(SYC,GL,NG1,M)
if(1G.eq.1) goto 1
I-- when const.components and harmonics of all orders are taken into account
jK=NG-1; jK1=jK-2
do j=1,NG
SY(1,j)=GL(j)*.5
end do
SY(1,1)=2.*SY(1,1)
do i=2,jK1,2
i2=i*2; i1=i+1; SY(i,i)=GL(1)+GL(i2)*.5
SY(i,i1)=GL(i2+1)*.5; SY(i1,i1)=GL(1)-GL(i2)*.5
jl=i+2
do j=j1,jK,2
j11=j+1; ji=j-i; jii=j+i; jil=ji+1; ji2=jii+1
SY(i,j)=(GL(ji)+GL(jii))*.5
SY(i,j11)=(GL(ji1)+GL(ji2))*.5
SY(i1,j)=(-GL(ji1)+GL(ji2))*.5
SY(i1,j11)=(GL(ji)-GL(jii))*.5
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end do
end do
SY(jK,jK)=GL(1)+GL(2*jK)*.5
SY(jK,NG)=GL(2*jK+1)*.5
SY(NG,NG)=GL(1)-GL(2*jK)*.5
do j=1,jK
il=j+1
do i=i1,NG
SY(i,j)=SY(j,i)
end do
end do
do i=2,NG
SY(i,1)=2.*SY(i,1)
end do; goto 3
l--- when only harmonics of odd orders are taken info account
1jK=NG-1; if(jK.EQ.1) goto 2; jK1=jK-2
do i=1,jK1,2
i2=i*2; SY(i,i)=GL(1)+GL(i2)*.5
SY(i,i+1)=GL(i2+1)*.5
SY(i+1,i+1)=GL(1)-GL(i2)*.5
jl=i+2
Do j=j1,JK,2
ij=iti; ji=j-i
SY(i,j)=(GL(ji)+GL(ij))*.5
SY(i,j+1)=(GL(ji+1)+GL(ij+1))*.5
SY(i+1,j)=(-GL(ji+1)+GL(ij+1))*.5
SY(i+1,j+1)=(GL(ji)-GL(ij))*.5
end do
end do
2 jK2=2%jK
SY(jK,jK)=GL(1)+GL(jK2)*.5
SY(jK,NG)=GL(jK2+1)*.5
SY(NG,NG)=GL(1)-GL(jK2)*.5
do j=1,jK
i1=j+1
do i=i1,NG
SY(i,j)=SY(j,i)
end do
end do
3 return
end subroutine GRPAR

The GRPAR procedure is designed to calculate the value of the matrix of differential
harmonic parameters (MDHP) SY of the form (1.45). It implements the algorithm 1.3 described
in section 1.4, according to which the value of MDHP is calculated according to the formula
(1.56).

The NG, NG1, M and SYC parameters must be set to numeric values before the
procedure is invoked. Here, SYC is a vector of size M, the elements of which are assigned the
values of the diagonal matrix of differential parameters of the form (1.49) in M nodes on a
period or half period.
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2.2.2.6. Procedure GRMAT

Text of the procedure:

Subroutine GRMAT(IG,SG,NK,SC,MK,K,M,NG,NG1)
1-- The procedure for calculating the value of the composite matrix SG
I-- of differential harmonic parameters of order NK=NG*K
I-- by value of composite martix SC of parametersin nodes with dimensions MK on K (MK=M*K)
I-- IG - control variable:
- if =0, then const.components and harmonics of all orders are taken into account
- if =1, then only harmonics of odd orders are taken info account
I-- NG - the number of elements of simple vector of amplitudes
I-- NG1=2*N+1 (at1G=1) i 4*N+1 (at 1G=0)
I-- M - the number of nodes per period (half-period)
.- SYC - working vector with number of elements M

I-- S - working array of order NG
!

Implicit none
integer,intent(in)::IG,NG,NG1,K,NK,M,MK
real,dimension(MK,K),intent(in)::SC
real,dimension(NK,NK),intent(out)::SG
real,dimension(NG,NG)::S
real,dimension(M)::SYC
integer::i,j,iN,jN,jM,ii,jj
do i=1,K
iN=(i-1)*NG
do j=1,K
iN=(j-1)*NG
do jM=1,M
SYC(jM)=SC((jM-1)*K+i,j)
end do
Call GRPAR(IG,S,NG,SYC,M,NG1)
do ii=1,NG
do jj=1,NG
SG(ii+iN,jj+jN)=S(ii,jj)
end do
end do
end do
end do
return
end subroutine GRMAT

The GRMAT procedure is designed to calculate the value of the composite matrix SY of
the differential harmonic parameters of the form (1.121), (1.122). It implements algorithm 1.5

described in section 1.5.4. When calculating the value of the SY matrix, the procedure k*
times (in a loop) calls the GRPAR procedure for execution.

Parameters K, M, NK, MK, NG, NG1 and SC must be assigned numerical values before the
GRMAT procedure is invoked. Here, SC is a matrix of size MK by K, which contains M blocks -
square matrices of order K. Each of these matrices has the values of the matrix of differential
parameters in 1,..., M nodes on a period (semi-period), which are diagonal blocks of matrices
of the form (1.127).
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2.2.3. The third program block

The third block of DHM-S components called Block 3 contains three procedures:
HARMOSC, CALCULU and IMPROVE, which implement algorithms for determining periodic
solutions of nonlinear systems of differential equations - numerical values of composite
amplitude vectors representing these solutions, as well as in cases of self-oscillation calculation,
the circular frequency of the fundamental harmonic.

2.2.31. Procedure HARMOSC
Text of the procedure:

Subroutine HARMOSC(K,Y0,E,NK,HM,H1,EPS1,EPS2,KER)
I-- The procedure for calculating nonlinear oscillations as a sum of
I-- harmonics - determining the periodic solution (solutions) of a
I--  nonlinear system of differential equations.
I-- The first approximation of the solution is obtained by calculating
I-- the h-characteristic (numerical integration by the Kutt-Merson method
I-- with a variable step and inverting when approaching special points).
I-- The solution is refined using Newton's method.

Implicit none

integer,intent(in)::K,NK

integer,dimension(10),intent(in)::KER

real,intent(in)::HM,H1,EPS1,EPS2

real,dimension(NK)::E

real,dimension(NK+2)::Y0,Y1,Y2,FO,F1,F2
real,dimension((KER(9)/KER(8)+1)*NK+2)::Y22

real,dimension(NK+1)::U
real::S,C1,C2,C3,C4,C5,C6,C7,C8,51,SN,E1,E2,PX0,PHO,PX1,PH1,YON,Y2N,AL,Al, AKER
integer::NG,NG1,M,MK,KH,L,NN,KI,ID,i,ij,KK,INEV,NI,NIT,LST

I Procedure parameters:

I-- K - the order of the system of differential equations

l-- YO0 - a vector of variables with size NK+2, its elements from the 1st

l-- to NK,these are the elements of the composite vector of amplitudes,

- NK+1 component is the circular frequency of the first harmonic,

- NK+2 (last) component - parameter h;

I-- E - composite vector of amplitudes of forcing force;

I--  NK - the size of the composite vectors of amplitudes;

I-- HM - the maximum value of the parameter h;

I--  H1 - the value of the param. h, at which it is necessary to clarify solution by Newton's method;
- EPS1 - relative accuracy of h-characteristic calculation;

I--  EPS2 - relative accuracy when refined by Newton's method;

I--  KER - an array of control variables, the values of its components are as follows:
I--  KER(1)=0 —const.components and all harmonics are taken into account

I--  KER(1)=1 - only odd harmonics are taken into account;

I--  KER(2)=1 - differential equations are in written form (1.65) or (1.67);

I--  KER(2)=0 - in written form (1.64) or (1.66);
I--  KER(3)=0 - in written form (1.64) or (1.65)
I-- KER(3)=1- in written form (1.66) or (1.67);

I--  KER(4)=0 - forced oscillations;
I--  KER(4)=1 - parametric oscillations;
- KER(4)=2 - self-oscillation;




I--  KER(5)=1 - it is necessary to print (remember) the values of the vector of variables

l-- at all points of the h-characteristic;

I--  KER(6)=1 - it is necessary to stop the movement along the h-characteristic after passing

l-- its first special point;;

I-- KER(7) - if =0 - there are no hysteresis characteristics; if equal to a whole positive number,

I-- it means that in the problem there are hysteresis characteristics and this whole number is the
I—  number of steps to expand the loop of the hysteresis characteristic to the real one

I--  KER(8)- the order of the highest harmonic;

I--  KER(9)- the order of the highest harmonic when increasing the number of harmonics

l-- taken into account;

I-- if KER(9)=0, no scaling is performed

- KER(10)- if =0, then after each increase in the number of harmonics, there are no printouts,

I-- the results are printed only after taking into account the harmonics with the highest order,
I-- if =1, then printouts are present after each increment

write(1,5) KER(8)
5 format(2X,'The highest harmonic order=',i2)
call SNCS(KER(1),KER(8),NG,NG1,M)
I-- calculated the values of matrices of harmonic transformations
if(KER(4).ne.0)E=0.

MK=M*K I-- MK - the size of the composite nodal vectors
KH=NK+2 !-- KH - number of components of the vector Y0, which
I-- is an independent variable
AL=0. I-- AL - the narrowing factor of the loops of the
I-- characteristics of the hysteresis form (if any)
KI=0 l-- KI - control variable, with KI=0 — calculation

I-- of the h-characteristic, with Kl=1 — refinement
I-- of the solution by Newton's method
INEV=1
1-- INEV - control variable, when INEV=0 - calculation of fluctuations;
l-- when INEV=1 - calculation of the inconsistencies for the
l-- initial value of YO
call CALCULU(KER,KI,INEV,AL,YO0,F0,U,NK,K,NG,NG1,M,MK,E,KH)
I-- the CALCULU procedure calculated the inconsistencies FO for the
I-- initial value YO
if(KER(4).eq.0)goto 4
write(1,1)
1 format(3X,'The initial value of the vector of amplitudes:')
write(1,3)Y0
write(1,2)
2 format(3X,'Residua for the initial value of the vector of amplitudes:')
write(1,3)FO
3 format(3X,4E12.4)
4 do i=1,NK+1
U(i)=FO0(i)
end do
I--- U - vector of residual
INEV=0; L=0 !-- L-number of the root at the point h=H1
if(KER(5).ne.1)goto 31
write(1,30)
30 Format(/10X,'The h-characteristic is calculating')
1

I--- Two first small steps according to Euler:
31doi=1,2
call CALCULU(KER,KILINEV,AL,Y0,FO,U,NK,K,NG,NG1,M,MK,E,KH)
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I--- here the CALCULU procedure calculates the derivative vector FO
Y0=Y0+.0005*F0
end do
$=.05 !--S-theinitial length of the integration step
LST=0
!
I-- Step start (Kutt-Merson method)
40 continue
LST=LST+1
NN=0 !-- zeroing of the NN damping, which records the fact of step crushing

1
I-- step start (if there was a decrease in step length)
50 C1=S/3.; C2=S/6.; C3=S/8.; C4=3.*C3
C5=5/2.; C6=3.*%C5; C7=2.*S; C8=2.*C1
KI=0 I-- updating the Kl value
call CALCULU(KER,KI,INEV,AL,YO0,F0,U,NK,K,NG,NG1,M,MK,E,KH)
PX0=F0(2); PHO=FO(NK+2)
I-- PXO0, PHO - derivatives of the 2nd and NK+2nd components
I-- at the beginning of the step
Y1=Y0+C1*FO
call CALCULU(KER,KLINEV,AL,Y1,F1,U,NK,K,NG,NG1,M,MK,E,KH)
Y1=Y0+C2*(FO+F1)
call CALCULU(KER,KILINEV,AL,Y1,F1,U,NK,K,NG,NG1,M,MK,E,KH)
Y1=Y0+C3*F0+C4*F1
call CALCULU(KER,KILINEV,AL,Y1,F2,U,NK,K,NG,NG1,M,MK,E,KH)
Y1=Y0+C5*F0-C6*F1+C7*F2
call CALCULU(KER,KI,INEV,AL,Y1,F1,U,NK,K,NG,NG1,M,MK,E,KH)
PX1=F1(2); PH1=F1(NK+2)
I-- PX1,PH1 - derivatives of the 2nd and NK+2nd components at the end of the step
Y2=Y0+C2*(FO+F1)+C8*F2
I-- end of calculations in the integration step
I-- Y2 - the value of the vector of variables at the end of the step

I-- step accuracy assessment
ID=0; E1=0.; E2=0.
do i=1,NG
E1=E1+Y2(i)**2; E2=E2+(0.2*(Y1(i)-Y2(i)))**2
end do
El=sqrt(E1)*EPS1; E2=sqrt(E2)
If(E2.1t.E1) goto 60
$=S/2.; NN=1; goto 50
I-- EPS1 accuracy not reached, step halved,
I-- return to the beginning of the step (at mark 50)
I-- with the fixation that step splitting has occurred (NN=1)

I-- EPS1 accuracy achieved
60 if(E2*10..gt.E1) ID=1
I-- evaluated the obtained accuracy:

I--  satisfactory (ID=1), good (ID=0)
!

S$1=Y2(2)-Y0(2)
YON=YO(NK+2); Y2N=Y2(NK+2);
SN=Y2N-YON; J=0; IF(SN.gt.0.) =1
I--  YON - the value of the parameter h at the beginning of the step
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I-- Y2N - the value of the parameter h at the end of the step

I-- SN - the increment of the parameter h per step

I-- S1 - increment of the 2nd component of the vector

I-- of amplitudes per step

I--  1J=1 when there is movement along the h-characteristic in the
I--  direction of increasing h

! and J=0 if it goes in the direction of decreasing

I-- A decision is made regarding the need to specify the root,
! (checking if H1 is within last step)
if(YON.gt.H1.and.Y2N.gt.H1.0or.YON.It.H1.and.Y2N.It.H1) goto 72
if(abs((H1-YON)/SN).gt.0.2) goto 61
Y1=YO0; goto 63
61 if(abs((H1-Y2N)/SN).gt.0.2) goto 62
Y1=Y2; goto 63
62 S=S*abs((YON-H1)/SN)*1.1; goto 50
63 L=L+1; Y1(NK+2)=H1; KI=1
write(*,*) 'Approximate solution is obtained'
write(1,64)
64 format(5X,40('-'))
write(1,77)
77 format(3X,'An approximate solution:')
call OUTP(KER(1),Y1,NK+2,K,NG,M,MK,0)
call NEWT(KLEPS2,NIT) !-- refinement of the root at h=H1 by Newton's method
write(*,*) 'the solution is specified by Newton"s method'
write(1,65)L,H1,NIT
65 format(1X,'specified value',12,' root for h=',F5.3/
& 2X,'(the solution was obtaind after',i3,'-nd iteration)')
KK=1; if(KER(7).eq.0) KK=0
Call OUTP(KER(1),Y1,NK+2,K,NG,M,MK,KK)
I-- Y1 - the specified value of the variables at the point h=H1
if(H1.ne.HM)goto 70
if(KER(7).eq.0) goto 68
write(1,67)
67 format(/5X,'taking into accaunt hysteresis')
AKER=KER(7)
do NI=1,KER(7)
Al=NI; AL=AI/AKER; call NEWT(KI,EPS2,NIT)
end do
call OUTP(KER(1),Y1,NK+2,K,NG,M,MK,0)
68 if(KER(9).ne.0) goto 69
return !-- output taking into account hysteresis
I-- increasing the number of harmonics taken into account
69 call IMPROVE(KER,K,KH,Y1,NK+2,NG,E,U,Y22,(KER(9)/KER(8)+1)*NK+2,EPS2,AL)
write(*,*) 'Increasing the number of harmonics that are taken into account is completed'
return I-- output after the completion of increasing the number of harmonics
70 write(1,64)
if(Y2N.gt.HM) goto 250
I
72 If(KER(5).ne.1)goto 74
if(KH.eq.NK+2) then
write (1,75) Y2(NK+2)

else
write(1,73) Y2(NK+2),KH
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end if
73 format(/2X,'Parameter h=',F8.5,', at this step variable ',13,’ is independent’)
75 format(/2X,'Parameter h=',F8.5,', at this step the parameter h is independent ')
KK=1; call OUTP(KER(1),Y2,NK+2,K,NG,M,MK,KK)
lemeee The OUTP procedure prints the value of the vector Y2
I----  (if KER(5)=1) at the end of the step
74 Y0=Y2
I-- end of step = start of next step
I-- A decision is made regarding the necessity of inverting
if(KER(4).ne.0) goto 140
If(KH.ne.NK+2) goto 130
if(abs(PX1).le.abs(PX0)) goto 140
KH=2; S$=S1; goto 140
I-- the derivative of the 2nd component of the vector of variables by parameter h increases,
I-- so we make the 2nd component an independent variable
I-- and we move on to integration by the 2nd variable with step S1
130 if(abs(PH1).le.abs(PH0)) goto 140
KH=NK+2; S=SN
I-- the derivative of the parameter h by the 2nd component of the
I-- vector of variables
I-- increases, so we make parameter h an independent variable
I-- and we return to the integration by parameter h with step SN
]
I-- A decision is made to complete the integration
140 continue
if(YO(NK+2).ge.HM) goto 250
if(KER(6).EQ.1.and.l).EQ.0) goto 230
if(YO(NK+2).1t.0.) goto 210
I-- exit the procedure if parameter h exceeds HM,
I-- or there was a task to stop the calculation at
I-- passing the first special point (KER(6)=1, h decreases),
I-- or parameter h became negative
If(NN.eg.1.0r.1D.eq.1) goto 40
$=S*2.5; goto 40
I-- We continue to calculate the h-characteristics (go to label 40):
I with the same step (if there was step splitting in the previous step
I (NN=1) or the accuracy of the stepwise integration is satisfactory
I (ID=1). Otherwise, the step increases.
]
210 write(1,220)
220 format(5X,'Parameter h has moved to the negative region')
write(*,*) 'Parameter h became negative'
return
230 write(1,240)
240 format(10X,'The first special point of the h-characteristics has been passed,' /10X, 'and therefore
& astopis provided (KER(6)=1)')
write(*,*) 'Passed first special point'
250 return

Contains

Subroutine NEWT(KI,EPS,NIT)
!

I-- The NEWT internal routine implements Newton's algorithm

I-- solution of a nonlinear system of finite equations
1
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integer,intent(in)::KI
real,intent(in)::EPS
integer::NIT
NIT=0
1 Call CALCULU(KER,KI,INEV,AL,Y1,F1,U,NK,K,NG,NG1,M,MK,E,KH)
l-- Here, CALCULU determines the vector of corrections F1

I-- by the value of the vector Y1
!

E1=0.; E2=0.; NIT=NIT+1; Y1=Y1-F1
do i=1,NG
E1=E1+Y1(i)**2; E2=E2+F1(i)**2
end do
El=sqrt(E1)*EPS; E2=sqrt(E2)
If(NIT.gt.20) goto 2
If(E2.gt.E1) goto 1

I---- EPS accuracy is achieved
!

return
2 write(1,3)
3 format(10X,'The number of iterations during refinement',/10X,'of the root at the point h=H1
exceeded 20')
write(*,*) 'Looping during refinement by Newton method'
stop
end subroutine NEWT
end subroutine HARMOSC

The HARMOSC procedure is an improved version of the HINVNEWT procedure described
in [20], it has become more universal and provides:

- modeling (calculation) not only of forced oscillations, but also of parametric oscillations and
self-oscillations;

- determination of all periodic solutions of a nonlinear system of differential equations, if there
is more than one of them;

- the possibility of modeling in the presence of elements with nonlinear hysteresis
characteristics;

- the possibility of modeling by increasing in the process of calculating the number of
harmonics taken into account to determine their required number for the sake of modeling
accuracy.

The HARMOSC procedure is called for execution by the main program of the user
software component package. It implements the algorithm for solving a nonlinear system of finite
equations, which is a harmonic representation of a system of differential equations, the periodic
solution of which is sought.

All parameters of the procedure are input, and before the procedure is called, they must
receive a value according to its interface defined by the operator

Subroutine HARMOSC (K,YO,E,NK,HM,Hl,EPS1 ,EPS2,KER) .

The first formal parameter is the variable K of integer type, it must be given the value of
the order of the system of differential equations, the periodic solution of which is sought, this is

the value of the variable & of the last component of the vector of the form (1.68).
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The second formal parameter is a one-dimensional real array of variables Y0, formed
from simple k vectors of amplitudes, the circular frequency @ of the fundamental harmonic,
and the parameter /1. The value given to it is the initial value of the variable array Y0. When

h =0 modeling forced oscillations, simple amplitude vectors are zeroed (because the /1 —
characteristic starts with zero harmonic amplitude values) and the value is set to @ . When
modeling self-oscillations or parametric oscillations, it is necessary to set initial values to simple
amplitude and frequency @ vectors, the values of which can be calculated using one of the
approximate solution methods, for example, the harmonic linearization method, etc.

The third formal parameter is the composite vector of amplitudes E of the forcing force.
It is given value only when calculating forced oscillations. For the case of parametric oscillations
and self-oscillations, this vector is zeroed by the HARMOSC procedure.

The fourth formal parameter is the NK variable of the integer type, it must be assigned
the value of the size of the composite vector of amplitudes of the form (1.79) - (1.82).

The fifth formal parameter is a real HM variable, which must be assigned the maximum

value of the parameter /1 to which the /1 -characteristics must be calculated.
The sixth formal parameter is the real variable H1, which must be assigned the value of

the parameter /1 at which the solution must be refined by Newton's iterative method (when
modeling self-oscillations and parametric oscillations, the parameters HM and H1 must be set
to the same value 1.0).

The seventh formal parameter is the real variable EPS1, which must be given the value

of the relative accuracy of the calculation /1 -characteristic.

The eighth formal parameter is the real variable EPS2, which must be assigned the value
of the relative accuracy to which the refinement of the solution by Newton's iterative method
must be performed.

The ninth formal parameter is an integer control vector KER , which has 10 elements.
They have the following content.

KER(1) — this variable is used to set the spectrum of a simple vector of amplitudes: if it
includes a constant component and harmonics of both even and odd orders, then this variable
must be assigned the number 0; if the simple vector of amplitudes is formed by the amplitudes
of harmonics of odd orders only, then this variable must be assigned the number 1. It should be
borne in mind that in those cases when it is not known for sure which of these two types of
spectra is expected even before the calculation, it is better to set the number 0, and if only odd
harmonics are present in the oscillatory process, then in the solution the relative amplitudes of
other harmonics and constant components will be zero (close to zero). This will give reason to
repeat the calculation by setting the variable KER(1) to 1.

KER(2) and KER(3) — these two variables are used to determine which form of the four
predicted variants (1.64) — (1.67) the system of differential equations, the periodic solution of
which is sought, has. If it fits into option (1.65) or (1.67), that is, when the variables whose
periodic dependences are sought are directly under the derivative signs, then the variable KER(2)
must be assigned the number 1, and if there are other variables under the derivative signs that
are nonlinear functions from those whose periodic dependences are sought, then the number 0
is assigned. If the system of differential equations fits into variant (1.64) or (1.65), that is, it is
solved with respect to the derivatives (in the normal Cauchy form), then the variable KER(3) must
be assigned the number 0, and the number 1 if the derivative vector is preceded by a square
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matrix of coefficients (the system of differential equations is not solved with respect to the
derivatives). The value of the variables KER(2) and KER(3) can also be determined according to
the following table:

A type of differential equation KER(2) (KER(3)
(1-64) 0 0
(1-65) 1 0
(1-66) 0 1
(1-67) 1 1

KER(4) — the value of this variable determines what kind of oscillations are sought: forced
oscillations — the number 0; parametric oscillations — number 1; self-oscillation - number 2.

KER(5) — this variable controls the memorization of data during calculation h-
characteristics: if it is set to 0, only the results that will be remembered (written to the output file
whose name is specified in the main user program) correspond to , and if you set 1, then the
results will be remembered at each point h-characteristics. In some cases, it is advisable to
remember the entire h-characteristic, because it is the one that is of interest (see further section
4.1.3 — calculation of the characteristic of the ferroresonant circuit). It may also be useful to
remember it in the case of an abnormal completion of the calculation and the need to analyze
its causes.

KER(6) — this variable determines whether the calculation of characteristics should be
continued if its first special point has already been passed (see section 1.5.7): if this variable is
assigned the number 0, then after passing the first special point, the calculations will continue.

KER(7) — this variable specifies the features of the calculation when the problem has
nonlinear hysteresis characteristics. If this variable has a value of 0, it means that the problem
does not have such characteristics. If this variable has the value of a positive integer (for
example, 5), then this will mean that the problem has such characteristics, and this integer
determines the number of steps for expanding the hysteresis loops when refining the solution
from zero area to the real one.

KER(8) - the value of this variable determines the number (order) of the highest harmonic
taken into account, this is the value in formula (1.8).

KER(9) — this variable specifies the features of the calculation in which the number of
harmonics taken into account is increased. If KER(9) is assigned the number 0, then the
increment of this quantity does not occur, and if it is assigned a number other than zero and
greater than that assigned to the variable KER(8), then the increment occurs from the value of
the variable KER(8) to the value of the variable KER( 9) with step 1.

KER(10) is a variable that controls the recording of results to the output file when increasing
the number of harmonics taken into account. If its value is 0, then only the results are recorded
when the harmonic number reaches the value of the KER(9) variable, and if its value is 1, then
the results are recorded after each build-up.

The procedure implements the algorithm for solving a nonlinear system of finite equations
of the form (1.77) or (1.83) or (1.84) or (1.85), which is a harmonic representation of a system of
differential equations whose periodic solution is sought.

Note that the limitation of the forms of recording of the systems of differential equations
under consideration to the forms (1.64) - (1.67) relieves the user of this procedure of the need
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to perform the harmonic algebraization operation, because it is embedded in the algorithm
implemented by the procedure.
Let us briefly describe this algorithm.

First of all, based on the given initial value of the vector of variables X "of the form
(1.89), which is stored in the one-dimensional array Yo, the value of the vector of residua (1.97)
is calculated - it is calculated by the CALCULU procedure called for execution (it is described
further), the value of the vector of residua is memorized by a one-dimensional U array.

Next is the calculation of the h-characteristic - the integration of the vector differential
equation of the form (1.102) is performed using the Kutt-Merson numerical method [48] with
automatic selection of the step size. At the same time, the step size is changed so that the
relative accuracy of the EPS1 calculation is satisfied. Integration is performed when the
parameter changes from zero to the value that the HM variable has.

Before starting the Kutt-Merson algorithm, this procedure includes the first two small
steps with the step length value AA = 0,0005, which are performed according to the Euler
method without accuracy control. This is due to the fact that in some tasks, in particular when
calculating periodic processes in nonlinear electric circuits with valves, at the first step of the
calculation h-characteristics, when it is determined at which nodes in the period the valves are
open and at which they are closed, the Kutt-Merson algorithm with accuracy control without such
an introduction can lead to unjustified splitting of the step.

When calculating parametric oscillations or self-oscillation, the value of the variables H1
and HM is set, as already shown, to be the same and equal to one, then the last point of the h-
characteristic is specified according to Newton's iterative method [44, 48]. When calculating the
forced oscillations, the values of the changed H1 and HM can also be the same and have equal
units, then the solution is refined at the full value of the forcing force. However, they can be
different, while the value of the variable H1 must be smaller than the value of the variable HM.
For example, if the H1 parameter is assigned a value of 0.4 and the HM parameter is assigned

a value of 0.9, then the procedure will calculate the h-characteristic in the range from 2 =10 to

h=0.9 andat h=0.4 specify the solution (or solutions, if there is more than one in this
range) according to Newton's method.

Once again, we emphasize the possibilities of the procedure.

1) The algorithm of the HARMOSC procedure provides for the possibility of inverting the
solvable system of differential equations (1.102) during the calculation of forced oscillations in
order to ensure the passage of special h-characteristic points, if any, during numerical
integration. The inversion algorithm is described in section 1.5.7. When inverting, the
independent variable — the parameter h — becomes the dependent variable, and the independent

variable becomes the second component of the vector of variables X

2) The HARMOSC procedure assumes the possible presence of nonlinear hysteresis
characteristics in the problem. If they are present (while the KER(7) element is non-zero), the
solution is first obtained assuming that all characteristics of the hysteresis form are replaced by
single-valued averaged characteristics that pass through the middle of the hysteresis loops. After
obtaining this initial solution, the hysteresis loops are gradually expanded to their full values -
the number of expansion steps is given by KER(7). After each expansion, the solution is refined
using Newton's method, while the value of the root of the previous stage of expansion is taken
as the zero approximation.
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3) The HARMOSC procedure also provides for the possibility of refining the obtained
solution by increasing the number of harmonics taken into account. If this option is selected, the
value of the KER(9) element must be non-zero. Then the value of KER(9) is perceived as the
maximum value of the number of the highest harmonic when increasing the number of
harmonics taken into account (before the number of harmonics taken into account was
increased, a solution was obtained in which the number of the highest harmonic was given by
the value of the KER(8) element).

During its work, the HARMOSC procedure invokes four external procedures: SNCS
(calculates the values of the matrices of harmonic transformations), CALCULU (calculates the
values of the vector of discontinuities, derivatives or corrections, described later), IMPROVE
(implements the algorithm for increasing the number of harmonics taken into account, described
later) and OUTP (processes the results and writes them to a separate file for subsequent printing)
and one internal procedure NEWT, which implements Newton's iterative algorithm for refining the
solution.

2.2.3.2. Procedure CALCULU

Text of the procedure:

Subroutine CALCULU(KER,KIINEV,AL,X,DX,U,NK,K,NG,NG1,M,MK,E,KH)
I-- CALCULU procedure:
I-- at INEV=1 by the value of vector X with size NK+2 determines the vector of discontinuities and assigns
- its value to the vector DX;
I-- at INEV=0 and KI=0 calculates the value of the vector X vector of derivatives DX with size NK+2 and
.- divide all components of this vector to its KH-th component;
I-- at INEV=0 and KI=1 by the value of the vector X determines vector of corrections DX for refinement of

- the solution by Newton's method.
|

Implicit none
integer,intent(in)::KIL,INEV,K,NG,NG1,M,NK,MK,KH
real,intent(in)::AL
integer,dimension(10),intent(in)::KER
real,dimension(NK+2),intent(in)::X
real,dimension(NK),intent(in)::E
real,dimension(NK+1)::U,Y1
real,dimension(NK+2),intent(out)::DX
real,dimension(NK)::XG,Y,Z,Y11,Y2
real,dimension(NK,NK)::SY,SZ,SY1,SY2
real,dimension(NK+1,NK+2)::A
real,dimension(MK)::XC,YC,ZC
real,dimension(MK,K)::ZXC,YXC
real,dimension(K,K)::B

real::CC,OM,H

integer::i,j,|IG,INFK,IA

I-- Procedure parameters:

I-- KER - an array of control variables

I-- KI,INEV - control variables

I-- AL - the narrowing coefficient of the characteristic loop of the hysteresis form
I-- X - avector of variables

I-- DX - vector of increments or corrections

I-- U - a non-coherent vector for the initial approximation of X

- NK - the size of the composite amplitude vectors;

I-- K - the order of the system of differential equations being solved;
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I-- NG - size of simple amplitude vectors;

I-- NG1 - the number of amplitudes to the 2nd harmonic;

I-- M - size of simple nodal vectors (number of nodes per period or half-period);
l-- MK - the size of the composite nodal vectors;

I-- E - a composite vector of forcing force amplitudes;

I-- KH - the number of the independent variable in the vector of variables

IG=KER(1); INFK=KER(2) ;IA=KER(3); OM=X(NK+1)
leeeee OM - circular frequency of the fundamental harmonic
do i=1,NK
XG(i)=X(i)
end do 1-- XG - composite vector of amplitudes
call KVGVS(K,XG,NG,NK,XC,M,MK)
I--- calculated the value of the composite nodal vector XC
call Model(AL,M,K,MK,XC,YC,ZC,YXC,ZXC,B)
I--- calculated composite nodal vectors YC,ZC and matrices YXC,ZXC
if(INFK.eq.1) goto 50
call GRMAT(IG,SY,NK,YXC,MK,K,M,NG,NG1)
50 Call GRMAT(IG,SZ,NK,ZXC,MK,K,M,NG,NG1)
I-- calculated the matrices of differential harmonic parameters SY, SZ
if(INEV.eq.1) goto 70
A=0.; l-- zeroed the matrix A
if(INFK.ne.1) goto 60
SY=0.
do i=1,NK
SY(i,i)=1.
end do
60 call OMAB(IG,SY,SY1,NG,K,NK,0M)
if(IA.ne.1) goto 61
SY2=SY1; call MBDMM(B,K,SY2,5Y1,NG,NK)
61 doi=1,NK
do j=1,NK
A(i,j)=SY1(i,j)+SZ(i,j)
end do
end do

I--- the main block of matrix A is formed
!

l--- we calculate the gaps
70 if(INFK.eq.1) goto 71
call KVSVG(K,YC,M,MK,Y,NG,NK)
71 call KVSVG(K,ZC,M,MK,Z,NG,NK)
l--- calculated the values of the vectors of amplitudes Y and Z
Y11=Y; if(INFK.eq.1) Y11=X
l--- calculated values of amplitude vectors:
e Y11 is a composite vector of amplitudes Yr or Xr
oo Z is the composite vector of amplitudes Zr
call OMVB(IG,Y11,Y,NG,K,NK,0M)
loeeeee Y is the product OM*D*Y1
if(lIA.ne.1) goto 72
Y11=Y; call MBDMV(B,K,Y11,Y,NG,NK)
72 continue
lomeee Y is the product OM*D*Y1 or Br*OM*D*Y1
H=X(NK+2); if(INEV.eq.1) H=1.
do i=1,NK
Y1(i)=Y(i)+2Z(i)-E(i)*H
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Y2(i)=Y(i)/OM
end do
Y1(NK+1)=0.; if(KER(4).eq.2) YI(NK+1)=X(2)
| Y1 is a vector of residua
oo Y2 is a vector D*Y1
if(INEV.ne.1) goto 800
do i=1,NK+1
DX(i)=Y1(i)
end do
return
lameeee calculated the residua
800 do i=1,NK
A(i,NK+1)=Y2(i)
end do
if(KER(4).eq.2) goto 801
A(NK+1,NK+1)=1.; goto 802
801 A(NK+1,2)=1.
802 if(Kl.eq.1) goto 803
l--- to calculate increments
do i=1,NK+1
A(i,NK+2)=-U(i)
end do; goto 804
l--- to calculate corrections
803 do i=1,NK+1
A(i,NK+2)=Y1(i)
end do
804 continue
call SYS(A,NK+1,NK+2)
I-- a system of linear equations is solved
do i=1,NK+1
DX(i)=A(i,NK+2)
end do
If(Kl.eq.1) goto 44
DX(NK+2)=1.
I--- divide by the KH-th component (inversion):
CC=DX(KH); DX=DX/CC
return
44 DX(NK+2)=0.
return
Contains
Subroutine MBDMV/(B,K,X,Y,N,KN)
! Multiplication procedure block matrix

! of the form (1.86) on the composite vector of amplitudes X
!

integer,intent(in)::K,N,KN
real,dimension(K,K),intent(in)::B
real,dimension(KN),intent(in)::X
real,dimension(KN),intent(out)::Y
integer::i,j,L,iNL,LjK

l-- Input values:

1-- B(K,K) is a square matrix of coefficients
l-- X(KN) is a composite vector of amplitudes
1-- Output value:
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I-- Y(KN) is a composite vector of amplitudes - the result
!

doi=1,K
do L=1,N
iNL=(i-1)*N+L; Y(iNL)=0.
do j=1,K
LjK=L+(j-1)*N
Y(iNL)=Y(iNL)+B(i,j) *X(LjK)
end do
end do
end do
return
end Subroutine MBDMV

Subroutine MBDMM(B,K,X,Y,N,KN)
! Multiplication procedure block matrix

! of the form (1.86) - on the composite matrix X
!

integer,intent(in)::K,N,KN
real,dimension(K,K),intent(in)::B
real,dimension(KN,KN),intent(in)::X
real,dimension(KN,KN),intent(out)::Y
integer::i,ig,j,L,Lg,iNL,jNL,LjK

I'lnput values:

! B(K,K) is a square matrix of coefficients

I X(KN,KN) is a composite block matrix of K*K blocks,
! each block is a matrix of dimension N

! Output value:

1'Y(KN,KN) - matrix - result

1

doig=1,K
do i=1,K
do Lg=1,N
jNL=(ig-1)*N+Lg
do L=1,N
iNL=(i-1)*N+L; Y(iNL,jNL)=0.
do j=1,K
LjK=L+(j-1)*N
Y(iNL,jNL)=Y(iNL,jNL)+B(i,j) *X(LjK,iNL)
end do
end do
end do
end do
end do
return
end Subroutine MBDMM
end Subroutine CALCULU

The CALCULU procedure is called to execute the HARMOSC procedure described in
the previous section and the IMPROVE procedure described later.

The CALCULU procedure implements the algorithms 1.6 and 1.7 described in section
1.5.5 - based on the given value of the X vector (composite vector of the amplitudes of the
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unknown X and the circular frequency @) using the instantaneous process model on the
period (or half-period) calculates:

1) the value of the vector of residual (1.97), if the control variable INEV has a value of 1,
or

2) the value of the derivatives according to the parameter /1 of the unknown
components of the vector at the step of numerical integration, if the control variables INEV and
KI have the value 0, or

3) the value of corrections to refine the solution according to Newton's method, if the
control variable INEV has a value of 0 and the control variable KI has a value of 1.

This procedure is focused on systems of differential equations exclusively in the writing
forms (1.64) - (1.67).

The CALCULU procedure when executed calls the KVGVS, KVSVG, OMAB, OMVB and
GRMAT procedures described in the previous sections from the corresponding block of standard
software components of the DHM-S, the SYS procedure for solving systems of linear equations
(it is given below in this chapter) and the Model procedure from block of user software
components (it specifies an instantaneous process model for a period or a half-period).

If the procedure works according to the second option, then the values of the derivatives
of the components of the unknown vector calculated at the integration step are divided by the
derivative component of the variable that is the independent variable at this step. This is how
the inversion of the system of differential equations described in section 1.5.7 is carried out.

The CALCULU procedure contains two internal subroutines - the MBDMV subroutine,
which performs the operation of multiplying a block matrix of the form (1.86) by a composite
vector of amplitudes - see formulas (1.84) and (1.85), and the MBDMM subroutine, which
performs the operation of multiplying a block matrix of the form (1.86) by a composite matrix -
see formulas (1.110) and (1.111). The routines MBDMV and MBDMM are called for execution
only when the control variable KER(3) has the value 1, that is, when a periodic solution (or
periodic solutions) of the differential equations of the form (1.66) or (1.67) is sought.

At the end of the description of the CALCULU procedure, it is necessary to pay attention
once again that it is focused on the system of differential equations exclusively in one of the
forms of writing (1.64) - (1.67). Harmonic algebraization of differential equations of these forms
is already embedded in it. That is why when using this procedure, the volume of preparatory
work of the user is minimal - he only needs to develop his Model procedure for a specific type of
system of differential equations. If this system of equations does not fit into any of the forms of
writing (1.64) - (1.67), then the user must develop his own CALCULU procedure, having
previously performed the harmonic algebraization of the system of differential equations, the
periodic solution of which is sought, and then this procedure from Block 3 DHM-S is transferred
to the block of user software components.

The need to develop a variant of the CALCULU procedure may also arise when the user
wants to use some additional capabilities of the method, for example, taking into account the
symmetry of a periodic process in a multiphase electrical circuit [15, 17, 20] or the same
symmetry in other oscillations, if they are there, - to reduce the number of unknown harmonic
amplitude vectors in order to minimize the required amount of computing resources.
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2.2.3.3. Procedure IMPROVE

In order for the trigonometric series of the form (1.8) reproduced by the found vector

X to approximate the time dependence of the variables in the periodic solution of the
nonlinear system of differential equations with the necessary accuracy, it is necessary to take
into account the appropriate number of harmonics. For the most part, in engineering calculations
of nonlinear oscillations in systems and devices, this number of harmonics is not too large.
Practically, establishing the required dimension of the amplitude vectors (in other words,
the number of harmonics that must be taken into account) can be carried out by means of a
numerical experiment, increasing the number of harmonics taken into account. This increase
can be done in different ways, for example, as follows.
The first approximation for the iterative process according to scheme (1.112),

calculated by the /1-characteristics method, should be sought when taking into account a small
number of harmonics. So, let 7 =3 be taken to obtain the first approximation of the sought-

after periodic solution of the system of differential equations, and after refinement according to

—

the scheme (1.112), the vector of amplitudes X ,. corresponding to one of the variables, for a
given value 7 , has the form

X® =colon(xP, X9, xP, x3, x9, x9

cl » sl » c3

X3, (26)

We increase the number of harmonics taken into account by one, thatis, we take
n =4, and as a first approximation for the iterative scheme (1.112) we take the value of the

vector of amplitudes

X =colon(X¥, X7, X7, X5, X3, X3, X3,0,0),  (27)

cl » sl » c3

which has two more components and the last two added components have zero values. After
the appropriate number of iterations of the solution refinement algorithm by Newton's method,
the last two components receive numerical values and the other components slightly change
their values.

After that, we again increase the number of components of the amplitude vector X by

two components and specify the value of the vector. We continue to increase the number of
harmonics that are taken into account in this way until the predetermined maximum number of
taken into account harmonics is reached.

This algorithm for increasing the number of considered harmonics is implemented by the
IMPROVE procedure, the text of which is given below.

Subroutine IMPROVE(KER,K,KH,Y1,N11,NGP,E1,U,Y2,N12,EPS,AL)
- The procedure for increasing the number of considered harmonics

I-- in the sought-after periodic solution of a nonlinear system of differential equations
1

Implicit none
integer,intent(in)::K,NGP,N11,N12,KH
integer,dimension(10),intent(in)::KER
real,intent(in)::EPS,AL
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110 Format(1X,'Refinement of the value of the root by increasing the number of harmonics from

real,dimension(K*NGP),intent(in)::E1
real,dimension(N11),intent(in)::Y1,U
real,dimension(N12),intent(out)::Y2
real,dimension(N12)::Y20

real,dimension(N12-2)::E2,E20

real,dimension(N12)::F2

real::51,52,H1,0M
integer::M,MKi,j,NIT,NB,NBP,NG,NG1,NGO,NK,NKR,IG,N1,KK

Procedure parameters:

KER is an array of control variables, in it:

KER(8) - the number of the highest harmonic before building up;

KER(9) - the number of the highest harmonic to follow build harmonics;
K - the order of the solvable system of differential equations;

KH - the number of the independent variable in the vector of variables

Y1 - a composite vector of the amplitudes of the solution to build-up

N11 - the number of elements of the vector Y1

NGP - the initial value of the size of the simple vector of amplitudes;
E1 - composite vector of forcing force amplitudes;

U - a vector of entanglements

Y2 - the original (refined) composite vector of solution amplitudes;
N12 - the number of elements of the vector Y2

EPS - relative precision for refinement

AL - narrowing coefficient of the hysteresis loop

write(1,110) KER(8),KER(9)

N=',12,' to N=",12)

NGO=NGP; IG=KER(1)
Y20=0.; E20=0.
doi=1,N11
Y20(i)=Y1(i)
end do
doi=1,N11-2
E20(i)=E1(i)
end do
H1=Y1(N11); OM=Y1(N11-1)
NKR=1; if(1G.eq.1)NKR=2
NBP=KER(8)+1; if(IG.eq.1)NBP=KER(8)+2
a cycle in which the number of considered harmonics is increased

do NB=NBP,KER(9),NKR

call SNCS(IG,NB,NG,NG1,M)

l-- calculated new values ??of matrices of harmonic transformations

NK=K*NG; N1=NK+2; MK=M*K
Y2=0.; E2=0.
doi=1,K
do j=1,NGO
Y2((i-1)*NG+j)=Y20((i-1) *NGO+j)
E2((i-1)*NG+j)=E20((i-1) *NGO+j)
end do
end do
Y2(N1)=H1; Y2(N1-1)=OM; NIT=0

300 Call CALCULU(KER,1,0,AL,Y2,F2,U,NK,K,NG,NG1,M,MK,E2,KH)
1-- The CALCULU procedure determines the value of the Y2 vector
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- vector of corrections F2 for refinement of the solution according to Newton's method
$1=0.; $2=0.
NIT=NIT+1;
doi=1,N1
Y2(i)=Y2(i)-F2(i)
end do
S$1=Y2(NG-1)**2+Y2(NG)**2
$2=F2(NG-1)**2+F2(NG)**2
S1=sqrt(S1)*EPS; S2=sqrt(S2)
If(NIT.gt.20) goto 320
I-- if looping, then emergency exit (at mark 320)
If(S2.gt.S1) goto 300
I-- if the accuracy is worse than EPS, then go to the next iteration
I-- (at mark miTky 300)
do j=1,N1
Y20(j)=Y2(j)
end do;
do j=1,NK
E20(j)=E2())
end do
NGO=NG
if(KER(10).eq.0.and.NB.ne.KER(9)) goto 310
write(1,305)NB
305 format(/1X,'added ',i2,'harmonic’')
KK=1; if(NB.eq.KER(9))KK=0
call OUTP(KER(1),Y2,N1,K,NG,M,MK,KK)
310 continue
end do
I-- the end of the cycle of increasing the number of harmonics
return
320 write(1,321)NB
321 format(10X,'Number of iterations when joining', 12,'-th harmonic exceeded 20')
write(*,*)'looping in the IMPROVE procedure'
stop
end subroutine IMPROVE

The formal parameters of the procedure are described in the comments.
The procedure IMPROVE when executed calls the procedures SNCS (called after each
change of value 7 ), CALCULU and OUTP.

* % %

It is possible to increase the number of harmonics considered in larger increments than
what is included in the IMPROVE procedure, for example two at a time.

The number of harmonics taken into account can also be increased in the direction of
decreasing numbers of their orders, that is, subharmonics can also be taken into account. So, if

we consider the first subharmonic with circular frequency @ /2, then it should be considered
as a new first, while setting at the levels (1.77), (1.83), (1.84) or (1.85) a new value of the circular

frequency equal to @/2,, and at the same time former first harmonics of all variable values
and forcing forces should be called other harmonics, second thirds, efc.

It should be noted that when increasing the number of taken into account harmonics of
variable values, it is important not to fall out those harmonics on which the phenomenon of
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resonance may occur. lgnoring resonant harmonics can significantly reduce the accuracy of the
obtained periodic solution.

The remarks stated above after the asterisks are not implemented in the IMPROVE
procedure. If the user wants to modify this procedure, he can use the mentioned comments.

2.2.4. The fourth program block

To this block (Block 4 in the DHM-S) we will assign procedures that implement operations
that are not operations of the differential harmonic method, but are general and can be used in
other tasks. In this sense, the block, although included in the DHM-S, actually does not belong
to it.

To begin with, we will introduce two procedures to this block: SYS for solving systems of
linear algebraic equations and INTLIN for linear interpolation from tables that specify hysteresis-
free magnetization curves of ferromagnetic materials.

It is suggested that the user in his work also refers to this block his own procedures of a
general nature and application.

2.2.4.1. Procedure SYS
Text of the procedure:

Subroutine SYS(B,KY,KV)
l--  Procedure for solving a system of linear equations
1-- by the Gaussian method with the selection of the main element.
I-- B - extended matrix of coefficients with dimensions KY*KV.
- The result is located in the far right column in place of free members

integer,intent(in)::KY,KV
real,dimension(KY,KV)::B
real::C1,C4
integer::L,i,j,K,L1
do L=1,KY
C1=0.0
do i=L,KY
C4=ABS(B(i,L))
if(C4.GT.C1) goto 2
goto 3;
2 K=i; C1=C4
3 enddo
do j=L,KV
C1=B(K,j); B(K,j)=B(L,j); B(L,j)=C1
end do
K=L+1
do j=K,KV
B(L,j)=B(L,j)/B(L,L)
end do
if(K.GT.KY) goto 7
do i=K,KY
do j=K,KV
B(I,j)=B(I,j)-B(I,L)*B(L,j)
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end do
end do
end do
7 do L=2,KY
j=KY-L+2; K=j-1
do L1=1,K
i=K-L1+1
B(i,KV)=B(i,KV)-B(i,j)*B(j,KV)
end do
end do
return
end subroutine SYS

The SYS procedure implements the well-known algorithm for solving a system of linear
equations according to the Gauss scheme with the selection of the main element [48].

This procedure could not be included in the DHM-S, and in programs for determining
periodic solutions of nonlinear differential equations, a similar procedure from a package of
standard subroutines of one or another library could be used. Its presence in the DHM-S
assumes the case when such a package of standard routines is unavailable to the user for one
reason or another. The presence of this procedure in Block 4 increases the autonomy of the
DHM-S.

Before applying this procedure, all its formal parameters must be given values, in
particular, parameter B - the value of the extended matrix of coefficients (free terms of the
equations - in the far right column), KY - the order of the system (the number of scalar equations
in the system), KV - the number of columns matrix B (KV=KY+1). The procedure places the
solution (the value of the unknown system of linear equations) in the far right column, in the
places of the free terms (the right-hand sides of the equations).

2.2.4.2. Procedure for linear interpolation magneti curve

Text of the procedure:

Subroutine INTLIN(X,Y,YX,X1,DX,XT,M)
l-- The procedure of linear interpolation of the magnetization curve
l-- X - abscissa; Y - ordinate; YX - a derivative
I-- XT(M) - the table for the non-linear part
l-- X1 - the initial abscissa of the non-linear part
I-- DX - table step

Implicit none
integer,intent(in)::M
real,intent(in)::X,X1,DX
real,dimension(M),intent(in)::XT
real,intent(out)::Y,YX
integer::j
real::AX,ZX,XM
ZX=sign(1.,X); AX=abs(X)
If(AX.GT.X1) goto 1
! Initial linear part
YX=XT(1)/X1; Y=ZX*YX*AX
return
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1 XM=X1+(M-1)*DX
if(AX.ge.XM)goto 2

! The non-linear part
j=(AX-X1)/DX+1
YX=(XT(j+1)-XT(j))/DX
Y=2ZX*(XT(j)+YX*(AX-(X1+(j-1)*DX)))
return

1

! The final linear part
2 YX=(XT(M)-XT(M-1))/DX
Y=ZX*(XT(M)+YX*(AX-XM))
return
end subroutine INTLIN

This procedure is intended for interpolation from the table, which specifies the hysteresis-
free characteristic of magnetization - for example, the dependence of the magnetic field induction
in a ferromagnet on its stress or the dependence of the flux-coupling of a coil with a
ferromagnetic core on its current. It is assumed that this curve is set only for positive values of
the abscissa (the curve is symmetric odd) and is divided into three parts: the initial linear, which
passes through the origin, the curvilinear (knee) and the final linear (after the saturation knee).
With such a breakdown, only the nonlinear part is numerically displayed: it is necessary to set
the value of the abscissa (voltage or current) of the beginning of the nonlinear part - X1, the step
between nodes (nodes equidistant) - DX, the number of table nodes - M and the table of ordinate
values (induction or flux linkage) in the nodes - XT. At the same time, the first node of the table
is the junction point of the initial linear part and the non-linear part (knee), the penultimate node
is the junction point of the non-linear part with the final linear part; the last node also lies on the
terminal line segment.

The algorithm by which the procedure works is as follows.

If the given value of the abscissa X (by absolute value) is smaller than X1, then the
extrapolation is carried out along a straight line passing through the origin and the first node of
the nonlinear part of the magnetization curve. If the given value of the abscissa X goes beyond
the non-linear part to the right, then the extrapolation is carried out along a straight line drawn
through the last two nodes of the table (the penultimate node completes the non-linear part and
the last one lies on the linear part). If the given value of the abscissa X is within the nonlinear
part of the magnetization curve, then the two nearest nodes are determined, a straight line is
drawn through them, and interpolation is carried out behind it.

The found value of the ordinate Y is assigned the sign of the abscissa X. The value of
the derivative is calculated as the tangent of the angle of inclination of the corresponding
segment of the broken line approximating the magnetization curve, and its value is assigned to
the formal parameter YX
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Chapter 3
METHODOLOGY OF NUMERICAL MODELING
OF NONLINEAR OSCILLATIONS

In this chapter, we will consider the method of creating a numerical model of nonlinear
oscillation using the theoretical provisions of Chapter 1 and the DHM-S described in Chapter 2.

First of all, let us emphasize that we will be talking about models that correspond to
systems of differential equations exclusively of the forms (1.64) - (1.67).

Creation of a numerical model of nonlinear oscillations involves the following stages.

1. Writing the system of differential equations describing the oscillating system and
reducing it to one of the forms (1.64) - (1.67).

2. Analysis of system nonlinearities from the point of view of the classification described
further in section 3.2.1. If among the nonlinearities there are those belonging to the second
and/or third groups, and they differ from those considered further in sections 3.2.1.1 and 3.2.1.2,
then for these nonlinearities it is necessary to develop instantaneous models on a period (semi-
period), for example those given in sections 3.2.1.1 and 3.2.1.2, and implement their
programmatic implementation, and attach the developed procedures to Block 5 of the DHM-S.

3. Development of a block of user software components for this task (see Fig. 2.1). This
block includes:

- the main program;

- the Model procedure, which implements an instant mathematical model of the process
on a period (semi-period);

- the OUTP procedure, which implements the algorithm for processing the results and
writing them to the output file.

Regarding the last procedure. If the user is satisfied with the level of processing of the
results implemented by the standard OUTP procedure described below in section 3.3 (it is
assigned to Block 5 of the DHM-S), then the user does not have to create his own version of this
procedure. The need for its development arises when larger-scale processing of the results is
required, for example, analysis of the stability of the obtained solution, construction of graphs
and tables, etc.

3.1. Structure of the main program

The purpose of the main program is input of input data, their initial processing and
organization of transmission to the HARMOSC and Model procedures and the call to execute
the HARMOSC procedure.

In the descriptive part of the program, it is necessary to describe:

a) a real one-dimensional array that stores the value of the vector of variables of the form

(1.89), and the last element of the array is the value of the parameter /;

b) a real one-dimensional array for the composite vector of forcing force amplitudes of
the form (1.81);

c) a whole one-dimensional array for the control vector KER, which has 10 elements;

d) a set of real and integer simple variables and arrays, which are necessary to transfer
information to the HARMOSC and Model procedures.

The descriptive part ends with a description of the shared memory area, which should

ensure the transfer of part of the data from the main program to the Model procedure.
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The input data entered by the main program from the input file is divided into two parts:

1) data to be passed to the HARMOSC procedure (passed through formal parameters);

2) data that needs to be transferred to the Model procedure (this includes, among other
things, information about non-linear relationships in the system) in ways other than the way of
transfer through formal parameters. In all the following examples, this is a transfer using common
memory areas (Common).

In the part of the program where the primary processing of the entered data is performed,
it is necessary to call the SizesV procedure (described later in this section, included in Block 5 of
the DHM-S), which determines the sizes of the simple and compound amplitude vectors, the
values of which are necessary for the formation of the compound vector of amplitudes of the
forcing force and the initial value of the vector of variables, and are added to the information to

be passed to the HARMOSC procedure. There, an initial value X § (see formula (1.97)) is

assigned to the sought-after vector of variables (its components are the composite vector of
amplitudes of the form (1.82), the circular frequency @ of the fundamental harmonic, and the

parameter /1) and a value is assigned to the composite vector of amplitudes E; of the form

(1.81) of the forcing force ( in the case of forced oscillations).

In the final part of the main program, after all the formal parameters of the HARMOSC
procedure have already been assigned the required values (see section 2.2.3.1 for a description
of its formal parameters), this procedure is called for execution.

An example of the text of the main program:

Program Main
Implicit none
real,dimension(14)::X
real,dimension(12)::E
integer,dimension(10)::KER
real::A,B,C,0M,EPS1,EPS2,H1,HM
integer::K,NG,NK
common/MP/A,B,C !--- shared area with the Model procedure
I--- Entering data from an input file
open(1,File='Daniln.dat’',status="old')
read(1,*)A,B,C,Ec
read(1,*)OM,EPS1,EPS at whytch the root 2,H1,HM
loeeee A,B,C — data to pass to the Model procedure
loeeee Ec — the amplitude of the forcing force
I----- OM - circular frequency
loeeee H1 - the value of the h parameter at which the root must be specified
loeeee HM — the maximum value of the parameter h
loeeee EPS1 — accuracy of h-characteristic calculation
R EPS2 — accuracy for Newton’s method

read(1,*)KER !--- KER —the array of control variables
read(1,*)K l--- K —the order of the system of differential equations
close(1)

I--- Output of input data to the output file
open(1,file='"DataOutp.dat’)
write(1,1)
1 format(4X,'Entered data:')
write(1,2)A,B,C,Ec
2 format(2X,' A="',E10.4,' B =',E10.4, ' C=",E10.4, ' Ec =',E10.4)
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write(1,3)OM,EPS1,EPS2,H1,HM
3 format(2X,' OM=',E10.4,' EPS1=',E10.4,' EPS2='E10.4,' H1=',E10.4,' HM=',E10.4)
write(1,5)KER
Write(1,4)K
4 format(2X,' K=',i2)
5 format(2X,1015)
call SizesV(KER(1),K,KER(8),NG,NK)
write(1,3)NG,NK
R NG - the size of the simple vector of amplitudes
leeeme NK - the size of the composite vector of amplitudes
E=0.; E(NG+1)=Ec
X=0; X(NK+1)=OM
I--- formed the vector of amplitudes E of forcing fotces
I--- and the initial value of the vector X
write(1,6)
6 format(/2X,'Calculatlion:’)
call HARMOSC(K,X,E,NK,HM,H1,EPS1,EPS2,KER)
close(1)
stop
end Program Main

In the descriptive part of the above main program:
- the real one-dimensional array, which stores the values of the vector of variables of the

form (1.89) and the parameter /1, is given the name X;

- the real one-dimensional array for the composite vector of forcing force amplitudes is
given the name E;

- the whole one-dimensional array (control vector) is given the name KER,

- the names A, B, C, OM, EPS1, EPS2, H1,HM, K, NG, NK are given to the real and integer
simple variables with which data are passed to the HARMOSC and Model procedures.

The example of the main program discussed above can be used as a sample in the
development of blocks of user software components in all cases of simulation of nonlinear
oscillations. As a sample, it is used in all the tests and examples of Chapter 4.

Here is the text of the SizesV procedure, which is called for execution by the main
program. This procedure is based on the given values of the formal parameter IG (if 1G= 0, then
the constant components and all harmonics are taken into account, and if I1G=1, then only
harmonics of odd orders are taken into account; the formal parameter IG corresponds to the
actual parameter KER(4)), the formal parameter K (the order of the system of differential
equations, the periodic solution of which is sought) and the formal parameter N (the number of
the highest considered harmonic, the actual parameter KER(8) corresponds to it) determines the
values of NG (the number of elements of the simple vector of amplitudes) and NK (the number
of elements of the complex vector of amplitudes ).

The sizesv procedure is assigned to Block 5 in the DHM-S. lts text is as follows:

97



Subroutine SizesV(IG,K,N,NG,NK)
I-- The procedure for determining the NK size of a composite vector
I-- the amplitude of the forcing force and the unknown vector
I-- and of the NG size of the simple vector of amplitudes

implicit none

integer,intent(in)::IG,K,N

integer,intent(out)::NG,NK

I-- IG - if =0, then all harmonics and constant components are taken into account;
I-- if =1, then only odd harmonics are taken into account
I-- K - the order of the system of differential equations being solved

I-- N - the number of the highest harmonic taken into account
!

NG=2*N+1; if(1G.eq.1)NG=N+1
NK=K*NG

return

end subroutine SizesV

3.2. Programming of an instantaneous model of process
on one period (semi-period)

When numerically modeling nonlinear oscillations (determining the periodic solution of a
nonlinear system of differential levels), they are calculated on one period (or half-period, if only
odd harmonics are present in the periodic dependences of the variables) containing m
equidistant nodes. The values of the process variables at these nodes are interconnected by
superimposed relationships, whether linear or non-linear. By the instantaneous mathematical
model of a periodic process on a period (semi-period), we will understand the algorithm for
determining the values of one variable at all nodes of a period (or half-period) based on the
values of other variables, while the latter are arguments and the former are functions. In relation
to equations of the form (1.64) — (1.67), the argument is a vector variable X and the functions
are the vector variables y and Z. This mathematical model is implemented by the Model

procedure, which is called for execution by the CALCULU procedure (see section 2.2.3.2).
Mostly, the values of the functions 3 and Z can be determined by the Model procedure

in each of the nodes of the period (semi-period), regardless of what these values are in other
nodes. Then the order of traversing the nodes when calculating by the value X of the values
y and Z in these nodes can be arbitrary, the easiest way is from the first to the last with the

number 2. However, under certain circumstances, the order of traversing the nodes to
calculate their values y and Z or their individual components must be different, for example,

starting from some internal node to the last, and then from the first to the one from which the
traversal began. Such circumstances may be the specificity of non-linear relationships between
variables.

Therefore, before considering the typical structure of the MODEL procedure, it is
advisable to first consider the types of nonlinearities that may be present in the problems of
calculating nonlinear oscillations.
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3.2.1. Types of nonlinearities

Nonlinearities in the relationships between the parameters of the system, in which the
oscillations are modeled, can be very diverse. Some types of nonlinearities may have features
that affect the way they are presented and used in DHM algorithms. Therefore, it is necessary
to classify them from this point of view.

Different authors have different approaches to the classification of nonlinearities [45, 52,
96]. Here, we will conduct it exclusively with regard to the specifics of taking into account
nonlinear connections in the numerical modeling of nonlinear oscillations by the proposed
method.

Nonlinearities with which we will further operate, that is, functional dependencies of the

y=ylx], (3.1)

where x isanargumentand ) is afunction, and these two variables are nonlinearly connected

to each other, let's divide into three groups.

Group 1 includes unambiguous nonlinearities - all types of continuous functions, both
smooth (here by them we mean functions whose first derivatives do not have discontinuities),
and non-smooth, that is, those whose graphs for some values of the argument have breaks, and
the graphs of their first derivatives - finite gaps. Examples of such nonlinearities are illustrated
in figures 3.1 - 3.6.

In fig. 3.1 shows a graph of the nonlinear dependence of the elastic force of a conical
spring as a function of the deviation from the equilibrium state, which can be analytically
represented by the formula [56]

form

F,=ax+bx’+cx’. (3.2)
In fig. 3.2 shows a typical hysteresis-free magnetization curve of a ferromagnetic
material, here the variable x can denote the intensity of the magnetic field or current of the
coil, the core of which is made of ferromagnetic material, and variable y - magnetic field

induction or coil flux coupling. Most often, this curve is given in the form of a table, from which
values are selected by interpolation.

¥ >
v >

Fig 3.1. The elastic characteristic ~ Fig. 3.2. Magnetization curve
of the conical rod
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In fig. 3.3 shows the curve of the dependence of the force of resistance to the movement
of a solid body in a gaseous medium depending on the speed of movement X. With a certain
idealization, this dependence can be given by the expression [56]

F, =alix, (3.3)

where X is the derivative of the deviation x of the body over time, that is, the speed of the
body's movement.

In fig. 3.4 shows the dependence of the elastic force of a spring with a subspring [56]. In
the figure, it is shown as a broken line that has a breaking point and is formed by two straight
lines. The breaking point corresponds to the deviation at which the pre-spring begins to be
loaded. It could also be a continuous line formed by two curved lines joining at the break point.

In fig. 3.5 shows the restriction function [56], which is implemented, for example,

Fig. 3.4. Characteristics of a spring

with a spring loaded spring Fig. 3.5. Function limitation Fig. 3.6. Characteristsc of zone

of insesnsintivity

hydraulic servo motor with a control spool. In [45, 52] it is called characteristic of the saturation
zone. This is also a broken line that has two breaking points and is formed by three straight lines.
In fig. 3.6 shows the characteristic of the insensitivity zone. This can be, for example [52],
the dependence of the speed of a direct current electric motor with independent excitation from
the armature voltage in the presence of the magnitude of the static load moment.
We also include the first group of nonlinearities functions having finite discontinuities. An
example of this functions are shown in fig. 3.7 relay characteristic ristic (characteristic of an
ideal relay) [45, 52]. It reflects the force of Coulomb (dry) friction [56], if the dependence
argument is not deviation, and the derivative of the deviation over time, that is, the speed, and
then the formula corresponds to it

F[x]=R—, (3.4)
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&y where R - modulus of friction force.

If the dependencies belonging to the first group have
finite gaps, then it is necessary to determine their values (and
the values of their derivatives) at the points of gaps, so that this
does not lead to problems during modeling. So, we can assume
that the function (3.4) at the point of discontinuity (at x = 0)
has the same value as at a point distant from it by an
infinitesimally small distance (to the left or to the right), and then
this valueis R or — R.

Group 2 of nonlinearities includes single-valued
nonlinearities with conditions. In this group, the functional
relationship between the variables x and y is defined by two or more dependencies

y=nlxl;

Fig. 3.7. Relay function

(3.5)

y = yk [X],

each of which can be of the form (3.1), and to determine the relationship between the argument
and the function in one or another node of the period (semi-period), one of them is selected
depending on the fulfillment of some condition. An example here can be the volt-ampere
characteristic of a controlled diode (thyristor), which is formed by two dependencies: one
describes the operation of the thyristor when it works as a diode (its resistance at a positive
applied voltage is significantly less than at a negative one), and the second, when the resistance
of the thyristor is large and constant, regardless of the sign of the applied voltage. According to
these dependencies, the resistance of the thyristor is determined not only as a function of the
argument (voltage or current), but also of an additional condition - the presence or absence of
an opening pulse and whether this pulse is supplied when the applied voltage is positive. These
characteristics are considered in more detail in section 3.2.1.1.

Group 3 of nonlinearities includes multivalued nonlinearities of the hysteresis type.
Figures 3.8 - 3.10 show samples of such dependencies [45, 52]. In fig. 3.8 shows the real relay
characteristic, which has the form of a hysteresis loop. In fig. 3.9 shows an ambiguous
(hysteresis) characteristic with a saturation zone. In fig. 3.10 shows the hysteresis characteristic
of elements of systems with backlashes or backlashes.

Y y y

A / ;I

X / / X / 7/; X
Fig. 3.8. Hysteresis relay  Fig. 3.9. Hysteresis characteristic of Fig. 3.10. Hysteresis charac-
characteristic the saturation zone teristic of backlash (clearance)
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Further, in section 3.2.1.2, a mathematical model on the period of a ferromagnetic
element with a magnetization hysteresis curve is considered.

Dependencies (3.1), (3.5) in the nonlinearities of the first and second groups and
individual branches of hysteresis loops (nonlinearities of the third group) can be specified both
analytically and in tabular form using one or another interpolation algorithm.

3.2.1.1. Instantaneous model of the controlled valve in one period

A characteristic example of the nonlinearity of the second group of the form (3.5) is the
functional relationship between the voltage u and current i of the controlled valve (thyristor),
that is, its voltage-current characteristic

u=uli] (3.6)

and differential (ohm-ampere) characteristic, that is, the dependence of the differential
resistance 7, of the valve on its current

ry =du/di =r,[i]. (3.7)

For a diode (uncontrolled valve), characteristics (3.6) and (3.7) are shown in Fig. 3.11
and 3.12 with solid lines (these are nonlinearities of the first group). When the gate current has
a “+" sign, itis open, and then its active resistance has some minimum value 7. , and when
the current becomes negative, the diode goes to the closed state, and its active resistance gets
some maximum value 7. According to such characteristics, at a given value of the current,

the voltage and resistance of the valve is determined at any node of the period of the periodic
mode, regardless of the current values of this valve at other nodes of the period.

y |l du
r, =—
B .
; di
P
1
_ ! Vinax Finin
_l_T I
Fig. 3.11. Volt-ampere characteristic Figc. 3.12. Dependence on the currenr
of the valve adifferential resistance of the valve

The characteristics of a controlled valve (thyristor), unlike the characteristics of a diode,
are characteristics with conditions. In order for the thyristor to switch from a non-conducting state
to a conducting state, it is not enough for the applied voltage and its current to change the sign
from minus to plus, an additional condition is the presence of a pulse on the special control
electrode. So, there are two conditions for the transition of a thyristor from a non-conducting
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state to a conducting state: the "+" sign of its current and the simultaneous presence of an
opening pulse on its control electrode. If any of these two conditions are not fulfilled, then the
thyristor cannot go from a non-conducting state to a conducting state.

Therefore, for a thyristor in a periodic process, characteristics (3.6) and (3.7) are the same
as for a diode, only for that part of the period that begins immediately after the opening pulse
(provided that during its action the voltage on the thyristor and its current are positive) and up to
the moment when the thyristor current passes through zero into the negative region. In other
parts of the period, these characteristics are depicted by straight lines in fig. 3.11 without
breaking and in fig. 3.12 - without a break (in these figures, solid lines are continued with dashed
lines).

Such a feature of the characteristics of the controlled valve leads to the fact that only
information about the sign of its current in this node is not enough to determine the values of the
voltage drop on it and its resistance at the node. If the valve current in some node has a “+” sign,
then it can be considered open, as already mentioned above, only under the following conditions:

a) the area of action of the opening pulse covers the considered node (the first of such
nodes in the area of action of the pulse when considering them from left to right opens the
conduction zone of the thyristor; the conduction zone ends with a node in which the current is
still positive and changes to negative in the next node that opens the zone of non-conductivity);

b) the pulse area does not cover the considered node, but in the previous node the valve
was open, that is, the conduction zone still continues.

It is impossible to check the fulfillment of these conditions separately for any node in the
period, while the value of the current in the previous nodes and the time coordinate of the pulse
must also be taken into account.

When creating an instantaneous model on the period of the controlled valve, it should
be taken into account that the location of the opening impulse is possible according to two

options shown in Fig. 3.13. In variant "a", the action of the pulse with angular duration Aa3
and distance &, from the beginning of the period ends before the end of the period. In variant
"b", the angular coordinate &, of the moment of occurrence of the impulse is close to the end

of the period, and the action of the impulse with the same duration Aa3 ends already in the
next period, or, which is the same, after the beginning of the considered period.

a) b)
o 2
< a3 > <A a3 > < a3 >
n * n
n3 n3K n3K n3

Fig. 3.13. Two options for the location of the ignition pulse on the period
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The algorithm of operation of the instantaneous thyristor model on the period is as follows.

We will consider the value of the nodal vector ig of the form (1.37) of the gate current
to be given.
In all nodes of the period, the resistance of the valve r;, is set to the maximum 7,

max *

Then, based on the specified values of the coordinates ¢r, and width Ac, of the ignition
pulse, we determine: the number 72, of the node in the period that corresponds to the beginning

(front) of the pulse and opens the scope of the pulse; node number #_,, which corresponds to
the final coordinate of the pulse and closes the scope of the pulse. After that, by scanning the

nodes from 71, to n_, we determine the first node in which the component of the vector i6

has the sign "+". The serial 7, number of this node is the initial coordinate of the conduction
zone of the valve. Next, we scan all the nodes, starting from #_, in order of increasing number,

and in all nodes where the values of the components of the vector Z; have a “+” sign, the gate
resistance is changed to 7, . . The scan ends when a node is detected in which the value of

—

the component of the vector i6 becomes negative, which means that it is outside the
conduction zone of the gate.

As a result of performing these operations, the value of the nodal vector 178 of the valve
resistances is calculated. Knowing the instantaneous values of the valve current and its

—

resistance at all nodes of the period, that is, the values of the vectors #, and 7., we calculate,

by multiplying their components of the same name, the value of the nodal vector L_ig of the
valve voltage.
The algorithm for calculating the values of the nodal vectors 7, and £, by the value

of the nodal vector Z; and the values of the coordinates ¢r, and Ac, the ignition pulse is
implemented by the VENPER procedure below (we refer it to Block 5 of the DHM-S).

Subroutine VENPER(STR,M,AZ,DAZ,RMAX,RMIN,UC,RV)
I-- The procedure for calculating the nodal vector UC of the gate voltage
I-- and nodal vector RV of its resistances

I-- by the given nodal current vector STR
l

Implicit none

integer,intent(in)::M
real,intent(in)::DAZ,RMAX,RMIN
real,dimension(M),intent(in)::STR
real,dimension(M),intent(out)::UC,RV
integer::i,1Z,NZ,NZD
real::AZ,AM,SM,AZDAZ
real,parameter::P12=6.2832

]
I-- Input values:

I-- STR - the nodal vector of the gate current
I-- M - the number of points in the period
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I--  AZ - valve ignition angle, rad.

I-- DAZ - ignition pulse width, rad.

I--  RMAX - the resistance of the closed valve
I -- RMIN - the resistance of the open valve
I-- Output values:

I--  UC - the nodal vector of valve voltages

I-- RV - the nodal vector of valve resistances

AM=M/PI2
10 if(AZ.le.PI2) goto 11
AZ=AZ-PI2; goto 10
11 AZDAZ=AZ+DAZ; if(AZDAZ.le.PI2) goto 20
AZDAZ=AZDAZ-PI2; goto 11
I---- values of ignition angles led to <= PI2
20 NZ=AZ*AM+1.5; NZD=AZDAZ*AM+1.5
If(NZ.gt.M) NZ=NZ-M
If(NZD.gt.M) NZD=NZD-M
I-- NZ - ignition switch unit number
I-- NZD - number of the ignition switch-off node
RV=RMAX
I-- The resistance of the valve in all nodes was set to the maximum
SM=0.; if(NZD.It.NZ) goto 30
I--  We are looking for the activation node according to option "a"
do i=NZ,NzZD
if(STR(i).gt.SM) goto 40
end do; goto 50
I We are looking for the activation node according to option "b"
30do i=NZ,M
if(STR(i).gt.SM) goto 40
end do
do i=1,NZD
if(STR(i).gt.SM) goto 40
end do; goto 50
40 1Z=i
I-- found IZ - the number of the valve activation node
do i=IZ,M
if(STR(i).gt.SM) RV(i)=RMIN
if(STR(i).le.SM) goto 50
end do
doi=1,1Z
if(STR(i).gt.SM) RV(i)=RMIN
if(STR(i).le.SM) goto 50
end do
I-- in all nodes of the conduction zone of the valve
I-- its resistance was made equal to RMIN
50 UC=STR*RV
I-- calculated the nodal vector UC of the gate voltage
return
end subroutine VENPER
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This procedure does not need additional explanations, since the comments in its text are
quite enough to track the logic and implement the algorithm.

3.21.2. Instantaneous model on the period
of nonlinearity of the hysteretic form

Let's consider one of the nonlinearities of the third group - the hysteresis type, in particular
- an inductive element with a ferromagnetic core, the Weber-ampere characteristic of which is
shown in Fig. 3.14.

This figure shows the main magnetization curve passing through the origin of coordinates,
and two branches - the upper and lower ones, which form the limiting hysteresis loop [4, 38]. We
denote the abscissa of the left merging point of the upper and lower branches i, and the

abscissa of the right merging point of these branches 7, . We will not take the so-called partial

symmetric and asymmetric hysteresis
loops into account and will assume that
the relationship between the flux coupling

main 1 and the current of the inductive element in
lower a periodlic process ?s e?(pressed either by
upper the main magnetization curve, if the

\ ; minimum and maximum current values in
| the period do not go beyond the values

; "é i, and i, or this relationship is
. | . expressed by the limit loop of hysteresis,
I | Ip if the minimum and maximum value of the
| current in the period go beyond these
| limits.

By the instantaneous mathema-
Fig. 3.14. Hysteresis loop tical model on the period (half-period) of

the hysteresis inductive element [26], we

will understand the algorithm for

calculating the values of the flux linkage ¥ and differential inductance L = dw /di of the

inductive element based on the values of its current Z in the same nodes of the period.
The input value of the model is the value i, of the current nodal vector of the inductive

element. The algorithm of the instantaneous model on the period (half-period) of the hysteresis
inductive element is as follows.

Among all the components of the nodal current vector i, , we look for its maximum 7.

and minimum . components, as well as the number #_. that has the minimum component
in the vector. At the same time, the following options are possible:

1) i,;,islessthan i, andatthesametime i . isgreaterthan i, then the values
of the elements of the nodal flux coupling vector are searched using the limit hysteresis loop. At
the same time, we start traversing the nodes of the period from the node with the number
n... . Atthe next node (7, +1), the value of the current will already be greater than i_ ..

106

min



(the current increases), and therefore, at these two points of the period, the connection between
w and I is determined by the lower branch of the loop. Moving through the nodes of the

period from #_. to the right and using the lower branch as the connection function between
w and 1 ,ineach of the nodes we determine the value of 1 and L and compare the
current value Z with 7_. , and as soon as it becomes greater than i ., the upper branch
is assigned as the function of the connection between y and 7. Moving the nodes further to
the right and determining the value i and L in each node and using the upper branch, in
each of the nodes we compare the value of the current Z with _. .Assoonas I becomes
smaller than i_. , the lower branch is again assigned as the connection function between

and 7. These actions in the order described above are repeated in all nodes until the end of
the period and then from the first node to the node with number #_ . - 1.

2) i, isnotlessthan 7, or i . isnotgreaterthan iy, then the main branch is
assigned as the connection function between 7 and 7 at all nodes of the period, and with its

use at all nodes of the period (here the nodes of the period can be bypassed in order from first
to last ) the values of 7 and L are determined by the current values 7.

This algorithm is implemented by the following procedure (we refer it to Block 5 of the
DHM-S):

Subroutine HISTPER(AL,STR,M,PS,LH,PST,XL,XP,DS,NH)
I-- The procedure for calculating the nodal vector PS of the flow coupling
I-- and the nodal vector LH of the differential inductances of the hysteresis element
I-- by the given nodal current vector STR

max’

I-- AL - narrowing coefficient of the hysteresis loop

I-- M is the number of elements in the nodal vectors STR, PS, LH

I--  PST - the table that specifies the hysteresis loop

I-- XL, XP - the left and right coordinates of the points of convergence of the branches
I-- DS - table step

I--  NH - the number of table nodes

implicit none
integer,intent(in)::M,NH
real,intent(in)::AL,XL,XP,DS
real,dimension(M),intent(in)::STR
real,dimension(3,NH),intent(in)::PST
real,dimension(3,NH)::PST1
real,dimension(M),intent(out)::PS,LH
integer::i,iN,NK
real::SN,SX
NK=2 ! NK-loop branch number
if(AL.eq.0.) goto 3
SN=STR(1); SX=STR(1); iN=1
doi=2,M

if(STR(i).gt.SN) goto 1

SN=STR(i); iN=i

1 if(STR(i).It.SX) goto 2
SX=STR(i)
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2 continue
end do
I-- determined the minimum SN and maximum SX value
I-- STR vector component and iN number of the minimum
if(SN.It.XL.and.SX.gt.XP) goto 4
I-- by the middle branch
3doi=1,M
call INTHIST(NK,STR(i),PS(i),LH(i),PST,XL,XP,DS,NH)
end do
return
I-- obtaining the PST1 table for the narrowed loop
4 doi=1,NH
PST1(2,i)=PST(2,i)
PST1(1,i)=PST(2,i)+AL*(PST(1,i)-PST(2,i))
PST1(3,i)=PST(2,i)-AL*(PST(2,i)-PST(3,i))
end do
I-- by the upper and lower branches of the loop
NK=3
do i=iN,M
call INTHIST(NK,STR(i),PS(i),LH(i),PST1,XL,XP,DS,NH)
if(NK.eq.3.and.STR(i).gt.XP) NK=1
if(NK.eq.1.and.STR(i).lt.XL) NK=3
end do
I-- went to the right along the lower branch
do i=1,iN-1
call INTHIST(NK,STR(i),PS(i),LH(i),PST1,XL,XP,DS,NH)
if(NK.eq.3.and.STR(i).gt.XP) NK=1
if(NK.eq.1.and.STR(i).lt.XL) NK=3
end do
I-- returned along the upper branch
return
Contains
Subroutine INTHIST(NK,X,Y,YX,YT,XL,XP,DX,M)
loeeee The procedure of linear interpolation of the given
R hysteresis loop table

I-- NK - loop branch number:

I-- 1 - upper

I-- 2 - average (main)

I-- 3 - lower

I-- X - the abscissa

I--Y - the ordinate

I-- YX - derivative

I-- YT - the table by which the loop is specified

I-- XL, XP - left and right coordinates of the points of convergence of the branches
I-- DX - table step

l-- M - the number of table nodes
!

Implicit none
integer,intent(in)::M,NK
real,intent(in)::X,XL,XP,DX
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real,dimension(3,M),intent(in)::YT
real,intent(out)::Y,YX
integer::j
If(X.LT.XL) goto 1
if(X.GT.XP) goto 2
I----- Interpolation within a loop
j=(X-XL)/DX+2
YX=(YT(NK,j+1)-YT(NK,j))/DX
Y=YT(NK,j)+YX*(X-(XL+DX*(j-2)))
return
I---- Extrapolation from the left
1 YX=(YT(NK,2)-YT(NK,1))/DX
Y=YT(NK,2)+(X-XL)*YX
return
I---- Extrapolation from the right
2 YX=(YT(NK,M)-YT(NK,M-1))/DX
Y=YT(NK,M-1)+(X-XP)*YX
return
end subroutine INTHIST
end subroutine HISTPER

The formal parameters of the HISTPER procedure are described in the comments located
immediately after the procedure header. However, several of them require additional
clarification.

About the formal parameter AL. The practice of calculations has shown that the numerical
simulation of periodic processes in systems containing nonlinear elements of hysteresis type
should be carried out in this order.

First, the calculation of the periodic process is performed under the condition that the
characteristics of all hysteresis elements are their main branches that pass through the origin of
the coordinates (the areas of the loops are reduced to zero). For this, the formal parameter AL
is assigned a zero value, and thus the upper and lower branches of the loops are combined with
the main branches. After that, the process of taking into account the hysteresis begins (see the
relevant part of the HARMOSC procedure, section 2.2.2.1): in the loop, the parameter of which
takes the value from unity to the value specified by the element KER(7) of the formal parameter
KER of the HARMOSC procedure, the value of AL changes from zero to units, and at the same
time the upper and lower branches deviate from the main branch and approach their real values.
With each change in AL, the solution is refined using Newton's iterative method. The solution
obtained for AL equal to unity is the one corresponding to the periodic process in the scheme
with hysteresis taken into account.

It is precisely in order to implement such an algorithm that the formal parameter AL is
included in the list of formal parameters of the HISTPER procedure.

The formal parameters PST, XL, XP, DS, NH of this procedure set the hysteresis loop and
have the following meaning:

DS - the step of the tables used to specify the branches of the loop;

XL - coordinate of the left point of convergence of the loop branches;
XP — coordinate of the right point of convergence of the loop branches;
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PST(3,NH) - an array that stores three tables of ordinate values of internalthe left of the
three branches of the loop (in the PST array, the first row is the table for the upper branch, the
second row is for the main branch, and the third row is the lower branch);

NH - the number of nodes in each table.

The values XL and XP are the beginnings of the linear parts of the converging branches,
and XL is the abscissa of the second node of the tables from the left and XP is the second node
of the tables from the right. This arrangement of these points allows linear extrapolation to the
left and right of the tables for the two extreme nodes.

The HISTPER procedure has its own INTHIST procedure, the purpose of which is linear
interpolation from the table specifying one of the loop branches. This procedure does not need
additional explanations, as they are all described in sufficient detail in the comments.

3.2.2. Auxiliary procedures for the development of the simplification
of procedure Model

The purpose of the procedures considered in this section is their use in the development
of the MODEL procedure, with the aim of simplifying the latter, in each specific case, of numerical
modeling of nonlinear oscillation. Each of these auxiliary procedures introduces a certain type
of macro operation of the method.

Let's break down these procedures (all of them will be assigned to Block 5 of the
DHM-S).

3.2.21. Procedure DRAWOUTV

This procedure makes it possible to extract the vector of the form (1.68) of the
instantaneous values of all process variables in the desired node during the period (half-period)
from the composite nodal vector of the form (1.118), formed in a parallel way.

Text of the procedure:

Subroutine DRAWOUTV(K,XC,MK,X,iM)
I-- A procedure that copies a fragment from a composite node vector,

I-- corresponding to the iM-th node on the period (semi-period)
!

implicit none
integer,intent(in)::K,MK,iM
real,dimension(MK),intent(in)::XC
real,dimension(K),intent(out)::X
integer::i
loeeee- Procedure parameters:
I--- K - the order of the diff. system. equations, he is - the number of elements of the X vector
I--- XC - composite nodal vector of the form (1.118)
I--- MK - the number of elements of the vector YC
I--- X - the vector of values ??of variables of the form (1.68)

I--- iM - specified number of the node on the period (half-period)
!

do i=1,K
X(i)=XC((iM-1)*K+i)
end do
return
end subroutine DRAWOUTV

The formal parameters of the procedure are sufficiently fully described in the comments.
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3.2.2.2. Procedure DRAWOUTXV

This procedure makes it possible to extract from the complex nodal vector of the form
(1.118) a simple nodal vector of the form (1.37) of the instantaneous values of one of the
variables at all m nodes of the period (semi-period).

Text of the procedure:

Subroutine DRAWOUTXV(K,XC,MK,M,XV,iK)
I-- A procedure that extracts from a composite nodal vector

I-- simple nodal vector for the iK-th variable
!

implicit none
integer,intent(in)::K,MK,M,iK
real,dimension(MK),intent(in)::XC
real,dimension(M),intent(out)::XV
integer::i

leeee- Procedure parameters:

I--- K - the order of the system of differential equations
I--- XC - composite nodal vector of the form (1.118)

I--- MK - the number of elements of the vector YC

I--- M - number of nodes per period (semi-period)

I--- XV - a simple nodal vector of the form (1.37)

I--- iK - specified variable number (iK is less than or equal to K)
!

doi=1,M
XV(i)=XC((i-1)*K+iK)
end do
return
end subroutine DRAWOUTXV

The formal parameters of the procedure are sufficiently fully described in the comments.

3.2.2.3. Procedure DRAWUPV
This procedure performs the opposite action of the DRAWOUTV procedure: it forms the
corresponding fragment of the composite node vector from the values of all variables in one
node of a period (semi-period).
Text of procedure:

Subroutine DRAWUPV(K,XV,XC,MK,iM)
I-- A procedure that "inserts" into a composite knot vector

I-- fragment corresponding to the iM-th node
!

implicit none
integer,intent(in)::K,MK,iM
real,dimension(K),intent(in)::XV
real,dimension(MK)::XC
integer::i




loeeeee Procedure parameters:

I--- K - the order of the system of differential equations
I---  and the number of elements of the XV vector

I--- XV - vector of appearance variables (1.68)

I--- XC - composite nodal vector of the form (1.118)

I--- MK - the number of elements of the vector YC

I--- iM - specified node number
!

do i=1,K
XC((iM-1)*K+i)=XV(i)

end do

return

end subroutine DRAWUPV

The formal parameters of the procedure are sufficiently fully described in the comments.

3.2.2.4. Procedure DRAWUPM

The result of this procedure is the formation of a fragment of the composite matrix of
nodal parameters of the form (1.127) - its diagonal block corresponding to one of the nodes of
the period (semi-period).

Text of the procedure:

Subroutine DRAWUPM(K,SX,SC,MK,iM)

I-- A procedure that "inserts" into a composite matrix of nodal parameters

I-- fragment corresponding to the iM-th node
!

implicit none
integer,intent(in)::K,MK,iM
real,dimension(MK,K)::SC
real,dimension(K,K)::SX
integer::i,j

leeeee Procedure parameters:

I--- K - the order of the diff system. equations and the SX matrix
I--- SX - matrix of instantaneous appearance parameters (1.128)
I--- SC - composite matrix of nodal appearance parameters (1.127)
I--- MK - the number of rows of the SC matrix

I--- iM - number of the node on the period (half-period)
l

do i=1,K
do j=1,K
SC((iM-1)*K+i,j)=SX(i,j)
end do
end do
return
end subroutine DRAWUPM

Here it should be borne in mind that the array SC contains all the diagonal blocks of the
composite matrix of nodal differential parameters of the form (1.127), shifted to the left, so that
they "stand" on top of each other. This is why the SC array has K (not MK) columns. The array
Sc contains a composite matrix of nodal differential parameters of the form (1.127) in a packed
form.

The formal parameters of the procedure are sufficiently fully described in the comments.
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3.2.2.5. Procedure ADDV

The purpose of this procedure is to add the values of the elements of the simple nodal
vector of the form (1.37) for one of the variables to the values of the corresponding elements of
the complex nodal vector of the form (1.118).

Such an operation is necessary in the case when there are nonlinearities of the second
and/or third groups in the oscillating system (see section 3.2.1). The values of the nodal vectors
of the variables containing the nonlinearities of these groups must be calculated, as shown in
previous sections 3.2.1.1 and 3.2.1.2, separately from the values of the composite nodal vectors
for the group of variables that are connected by linear dependencies and/or nonlinearities of the
first group. After their separate calculation, it becomes necessary to add the values of the
elements of these nodal vectors to the values of the corresponding elements of the previously
calculated composite nodal vectors and obtain the final values of the composite nodal vectors.

The text of the procedure is as follows:

Subroutine ADDV(K,XV,M,XC,MK,iK)
I-- A procedure that adds to the elements of a compound node

I-- vector elements of a simple nodal vector of the iK-th variable
!

implicit none
integer,intent(in)::K,MK,M,iK
real,dimension(MK)::XC
real,dimension(M)::XV
integer::i
oo Procedure parameters:
I--- K is the order of the system of differential equations
I--- XV is a simple nodal vector
I--- M is the number of elements of the XV vector
I--- XC is a composite nodal vector
I--- MK - the number of elements of the XC vector

l--- iK - variable number
|

doi=1,M
XC((i-1)*K+iK)=XC((i-1) *K+iK)+XV/(i)
end do
return
end subroutine ADDV

The formal parameters of the procedure are sufficiently fully described in the comments.

3.2.2.6. Procedure ADDM

The purpose of this procedure is to add the values of the elements of the matrix of nodal
parameters of the form (1.49) for one of the variables to the values of the corresponding
elements of the composite matrix of the nodal parameters of the form (1.127).

Such an operation is necessary in the case when there are nonlinearities of the second
and/or third groups in the oscillating system. The values of the nodal parameter matrices for the
variables containing the nonlinearities of these groups must be calculated, as shown in the
previous sections, separately from the values of the composite nodal parameter matrices for the
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group of variables that are connected by linear dependencies and/or nonlinearities of the first
group. After their separate calculation, it is necessary to add the values of the elements of these
nodal parameter matrices to the values of the corresponding elements of the previously
calculated nodal parameter matrices.

Text of the procedure:

Subroutine ADDM(K,XM,M,XMC,MK,iK)
I-- A procedure that adds to a compound node matrix of parameters

I-- a simple nodal diagonal matrix of parameters for the iK-th variable
]

implicit none
integer,intent(in)::K,M,MK,iK
real,dimension(M)::XM
real,dimension(MK,K)::XMC
integer::i
oo Procedure parameters:
I--- K - the order of the system of differential equations
I--- XM - a simple nodal diagonal matrix
I--- M - the number of elements of the XM matrix
I--- XMC - composite matrix of nodal parameters
I--- MK - the number of rows of the XMC matrix
I--- iK - variable number
do i=1,M
XMC((i-1)*K+iK,iK)=XMC((i-1) *K+iK,iK)+XM(i)
end do
return
end subroutine ADDM

The formal parameters of the procedure are sufficiently fully described in the comments.

3.2.3. Sample procedure Model

Now we can consider the structure of the Model procedure, which will serve as a sample
for its development in each specific case of modeling.
The sample text of this procedure is as follows.

Subroutine Model(AL,M,K,MK,XC,YC,ZC,YXC,ZXC,BM)

I The subroutine implements the instantaneous pricess model
!

Implicit none

real,intent(in)::AL
integer,intent(in)::M,K,MK
real,dimension(MK),intent(in)::XC
real,dimension(MK),intent(out)::YC,ZC
real,dimension(MK,K),intent(out)::YXC,ZXC
real,dimension(K)::X,Y,Z
real,dimension(K,K)::YX,ZX,BM
real,dimension(M)::XV,UV,RV,UV1,RV1
real,dimension(3,3)::B

real::C1,C2,C3
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integer::i
common/MPM/C1,C2,C3,B
I-- through Common/MPM/ data from the main program is transferred
BM=B
doi=1,M
call DRAWOUTV(K,XC,MK,X,i)
Y(1)= ;Y(2)= ; Y(B)=
call DRAWUPV(K,Y,YC,MK,i)
Z(1)= ;Z(2) ; z(3)=
call DRAWUPV(K,Z,ZC,MK,I)
YX(1,1)= ;YX(1,2)= ;YX(1,3)=
YX(2,1)= ;YX(2,2)= ; YX(2,3)=
YX(3,1)= ;YX(3,2)= ; YX(3,3)=
call DRAWUPM(K,YX,YXC,MK,i)
ZX(1,1)=  ;ZX(1,2)= ; ZX(1,3)=
X(2,1)= ;ZX(2,2)= ; ZX(2,3)=
ZX(3,1)= ;ZX(3,2)= ; ZX(3,3)=
call DRAWUPM(K,ZX,ZXC,MK,i)
end do
call DRAWOUTXV(K,XC,MK,M,XV,3)
call TIMEMOD(XV,M,...,UV,RV)
call ADDV(K,UV,M,ZC,MK,3)
call ADDM(K,RV,M,ZXC,MK,3)
return
end subroutine Model

First of all, we note that the title of the procedure (its name and the number of formal
parameters and their types) cannot be changed, because it is specified by the HARMOSC and
IMPROVE procedure call operators (see sections 2.2.2.1 and 2.2.2.3).

The formal parameters of this procedure are:

AL is a real variable, the narrowing coefficient of the hysteresis loop (in case there are
hysteresis-type nonlinearities in the problem);

M is an integer variable, the number of nodes per period (half-period) of the process, it
is also the size of a simple nodal vector;

K is an integer variable, the order of the system of differential equations describing
oscillations;

MK is an integer variable, the size of the complex nodal vector;

XC is a real one-dimensional array, a composite nodal vector for a vector variable, the
time dependence of which is the desired periodic solution of the system of differential equations
of the forms (1.64) - (1.67);

YC is a real one-dimensional array, a composite nodal vector for a vector variable in
equations of the form (1.64) or (1.66);

ZC is a real one-dimensional array, a composite nodal vector for a vector variable in
equations of the form (1.64) - (1.67);

YXC is a real two-dimensional array, stores a complex matrix of nodal differential
parameters of the form (1.127a), whose diagonal blocks are located one under the other - for
the purpose of denser packing;
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ZXC is a real two-dimensional array that stores a complex matrix of nodal differential
parameters of the form (1.127b), whose diagonal blocks are located one below the other;

BM is a real two-dimensional array, for a matrix of the form (1.69).

The set of formal parameters described above assumes the case when the solvable
system of differential equations has the most general form (1.66). For cases when the form of
the system of differential equations is different - (1.64), (1.65) or (1.67) - some of the formal
parameters will be unused.

The Model procedure also receives data from the main program using a shared memory
area, the name of this area (here MPM ) must be the same as in the main program. It is given by
the operator Common/MPM/C1,C2,C3,B. In this shared memory area, there are three real variables
C1,€2,C3 and a real two-dimensional array B(3,3) containing a matrix of the form (1.69) for the
case when the system of differential equations to be solved is of the third order.

The first executed statement BM=B assigns the value of the matrix B to the formal
parameter BM .

Next in the procedure is a loop (let's call it the main loop of the Model procedure), whose
parameter i changes from 1 to M. In this loop:

- the call DRAWOUTV(K,XC,MK,X,i) operator calls the DRAWOUTV procedure (see section
3.2.2.1), which copies the fragment corresponding to the i-th node in the period (semi-
period) from the XC array and assigns it to the X array, which is intended for storing the
vector (1.68a);

- operators Y(1)=; Y(2)=; Y(3)= calculate the value of the array Y, which stores the value
of the vector (1.68b);

- the operator call DRAWUPV(K,Y,YC,MK,i) (see section 3.2.2.3) the value of the Y array is
inserted as a fragment into the YC array;

- then similar actions are performed with respect to arrays Z and zC;

- Operators  YX(1,1)=; YX(1,2)= ... ; YX(3,3)= calculate the value of the elements of the
diagonal block corresponding to the ith node on the period (semi-period) of the matrix
(1.127a);

- by the operator call DRAWUPM(K, YX,YXC,MK,i) (see section 3.2.2.4), the value of the YX
array is inserted as a fragment into the YXC array;

- then similar actions are performed for zZx and zXC arrays.

The cycle described above forms the arrays YC, ZC, YXC and ZXC in the part that
corresponds to all linear elements of the system and nonlinear ones, except for those containing
nonlinearities of the second and third groups.

The procedure ends with a group of operators that finalize the arrays YC, ZC, YXC and
ZXC in the part that corresponds to the nonlinear elements of the system containing the
nonlinearities of the second and third groups. These operators are:

- operator call DRAWOUTXV(K,XC,MK,M,XV,3) (see section 3.2.2.2), which copies a fragment
of the XC array and forms an XV array (a simple nodal vector of the form (1.37) corresponding to
the third element of the vector ); it is believed that in this problem it is related to the nonlinearity
of the second or third group);

- operator call TIMEMOD(XV,M,...,UV,RV), which calls some TIMEMOD procedure (here the
name of the procedure is conditional), which implements an instantaneous model during the
period of this nonlinearity from the second or third group;

- operators  call ADDV(K,UV,M,ZC,MK,3) and call ADDM(K,RV,M,ZXC,MK,3) (see sections
3.2.2.5 and 3.2.2.6), which add to the elements of the complex nodal vector Z€ and the complex
matrix of nodal parameters zZXC the corresponding elements of the simple nodal vector uv and
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the matrix of nodal parameters RV (it is considered that in this problem the arrays YC and YXC
do not need).

If the oscillating system does not contain nonlinearities of the second or third groups, then
there are no other operators between the end of the main cycle of the Model procedure and its
Return operator.

The sample procedure Model described in this section is fairly stereo-typical. It
individualizes in each specific case of modeling only the body of the main loop (operators
between “do i=1,M ” and “end do”), and, in the case of nonlinearities of the second and/or third
groups, operators between “end do * and “return”. This is illustrated by all the examples in
Chapter 4.

3.3. Procedure OUTP

As already mentioned in section 2.1 and in the introductory part of this chapter, the ouTP
procedure for processing and saving simulation results belongs to the block of user software
components. This procedure can be developed individually for each simulation case. However,
it is possible to develop a typical OUTP program and assign it to Block 5 of the DHM-S. And only
in the case when the operations included in the typical OUTP procedure do not satisfy the user,
he will be forced to develop his own version of this procedure. However, the title of the procedure
(name, list of formal parameters and their types) cannot be changed, because it is determined
by the call operators in the HARMOSC and IMPROVE procedures

The text of a typical (standard) OUTP procedure is as follows.

Subroutine OUTP(IG,Y,N,K,NG,M,MK,KK)
I-- The procedure for processing and memorizing (recording) the results to a file

I--  with results (with KK=1, the recording volume is minimal)
!

Implicit none
integer,intent(in)::IG,N,K,NG,M,MK,KK
real,dimension(N),intent(in)::Y
real,dimension(MK)::XC
real,dimension(M)::XV
integer::i,j,KG,N1,N2,N3,KNG
real::AC,AS,AA
KG=(NG-1)/2
If (1G.eq.0) then
N1=KG; N2=1; N3=2
else
N1=NG; N2=2; N3=1
end if
KNG=K*NG
call KVGVS(K,Y,NG,KNG,XC,M,MK)
doi=1,K
write(1,10)i
if(IG.ne.0) goto 1
write(1,11) Y((i-1)*NG+1)
1 doj=1,N1,N2
AC=Y((i-1)*NG+N3*j); AS=Y((i-1)*NG+N3*j+1)
AA=sqrt(AC**2+AS**2)
write(1,12)i,j,AC,i,j,AS,i,j,AA
end do
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if(KK.eq.1)goto 2
if (1G.eq.0) then
write(1,13)M
else
write(1,14)M
end if
call DRAWOUTXV(K,XC,MK,M,XV,i)
write(1,15)XV
2 continue
end do
write(1,16)Y(K*NG+1)
return
10 format(2X,'Amplitudes of harmonics of ',i2,'-th variable:')
11 format(2X,'constant component = ',E11.4)
12 format(2X,'X",i1,'(c',i2,')=',E11.4," X',i1,'(s",i2,')=",E11.4," X\i1,'(,i2,")=',E11.4)
13 format(2X,'The value of the variable in nodes of the period, M=',i3')
14 format(2X,'The value of the variable in nodes of the half-period, M =',i3)
15 format(2X,6E11.4)
16 format(2X, 'circular frequency of the fundamental harmonic =',E11.4)
end Subroutine OUTP

The formal parameters of the procedure are:

IG — variable of integer type; if its value is zero, then it is considered that the variables of
the problem have constant components and harmonics of both even and odd orders; if its value
is one, then it is considered that the variable problems have only odd harmonics;

Y - a real one-dimensional array formed from the composite vector of amplitudes of
variables of the form (1.82), the circular frequency of the fundamental harmonic and the
parameter ;

N - a variable of the integer type, the size of the array Y,

K- avariable of integer type, the order of the system of differential equations, the periodic
solution of which is sought;

NG - an integer type variable, the size of a simple vector of amplitudes;

M - an integer variable, the number of nodes per period (semi-period), the size of a
simple nodal vector;

MK - an integer type variable, the size of the complex nodal vector;

KK - a variable of integer type; if its value is one, then not all data is saved (written to
the output file), but only part of it.

The main program of the block of user software components and the OUTP procedure
can contain statements that implement dialog (when entering data) and multimedia (when
outputting data in the form of graphs, diagrams, tables, etc.) capabilities of the latest versions of
Fortran (or other languages - through compatible programming or under "unification of object
modules as compilation products from these languages). The author leaves these possibilities
to the user who owns such software tools.
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Chapter 4
TESTS AND EXAMPLES

In this chapter, a number of tests and examples are considered, the purpose of which is
to illustrate the application of DHM and its software, as well as to perform their verification.
Among them are both problems that have approximate solutions by analytical methods, and then
such problems play the role of tests, and problems that cannot be solved by analytical methods.

4.1. Tests and examples of calculations of forced oscillations

This section presents several examples of numerical modeling of forced oscillations in
nonlinear systems with various types of nonlinear connections in them. These are examples
B.1 - B.5. In each example of this group, the fourth element KER(4) of the KER control array is
set to 0 (meaning oscillation is forced) before calling the HARMOSC procedure in the main
program of the user program component block.

41.1. Example (project) B.1

As a test calculation for the case when the nonlinearity in the system is unambiguously
unconditional (belongs to the first group of nonlinearities) and it is given analytically, we will
consider in this project the calculation of forced oscillations of a body in a gaseous medium.
A similar example is given in [56] under number 4.2.1.

With a certain idealization, it can be assumed that the resistance force of a moving body
in a gas medium is proportional to the square of the velocity and has the same sign as the
velocity of the body (see formula (3.3) and Fig. 3.3). Taking this equation into account, the motion
of the body has the form

X+ wix+ a\x\x = hsin(wt + @). (4.1)

In [56], when considering this example and determining the oscillation parameters, the
method of harmonic balance is used (as analytical) and the solution is sought in the form

X=asinwt . (4.2)

As a result of substituting (4.2) into (4.1) and a series of analytical transformations, the value of
the amplitude a of oscillations is obtained as the root of the biquadratic equation

2 4
649“—2("a4 (@ -0*) d’—h =0 (4.3)
T

and is expressed by the formula (at @ < @)
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\/—bz . [b% +4b 1 "
a= .

2b,
here
64a” @’
b=—: (4.5)
: 97
by = (@, ~@)", (4.6)
and the initial phase of the forcing force - by the formula
g 2
@ = arctg @ae (4.7)

37(w; — )
Formulas (4.1) — (4.7) use the same notation as in [56] when considering example 4.2.1
there. In particular, in the notation of differential equation (4.1), as before in formula (3.4), one
dot above the variable means that it is the first derivative of this variable in time, and two dots
above the variable means that it is the second derivative.
If specified by numerical values
w=100 1/c; w,=25.0 1/c;

a=12.0 I/n;  h=100.0 nu/c*,

then by formulas (4.4) and (4.7) we obtain @ =0,1797 m; ¢ =0,335 rad.

We will calculate these same oscillations using the proposed numerical polyharmonic
modeling using DHM-S. At the same time, we will use the numbers obtained by formulas (4.1) -
(4.7) as standards for comparison and at the same time evaluate the admissibility of neglecting
higher harmonics in the analytical solution.

Preparation of the task for modeling.

We write equation (4.1) in the form

dx dx :
—L=x,; —2+wyx, +ax,|x, =h, coswt+h sinwt (4.8)
dt dt
given that
hsin(wt+@)=h.coswt+h sinwt. (4.9)

We calculate the value of the forcing force amplitudes
h, = hsin g =100.0sin(0.335) =32.9 m/c’;

(4.10)
h, =hcosp=100.0c0s(0.335)=94.4 u/c”.

We reduce the system of equations (4.8) to the form (1.65)
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—+zZ—-¢e=0 (4.11)
with designations

N et I (4 —X
X = . Z= = , ; (4.12a,6)
X, Z, Wy X, +a ‘xz X,

= e 0
e=| '||= , . (4.128)
e, |h.coswt+h sinwt

The value of the derivative dZ/dx, which is the diagonal block of the composite matrix

of nodal differential parameters S; of the form (1.127b) and is used in the formation of an

instantaneous mathematical model of the process on a half-cycle (due to the oddity of the
nonlinear dependence of the resistance force on the speed of body movement in the problem,
harmonics of only odd orders are present) is as follows

dz_| 0 -l 4.13
& ot 20 (419

The project "Example B.1" is implemented in the integrated program development
environment (platform) Microsoft Developer Studio and its appearance in the window of this
platform is shown in fig. 4.0.
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Block2.90 | Mampuyl zAPMOHIMHUY NSPENBOPSHE 1 AKL MAanMbL Sy
Block3.690 | gocmynHuMu BC1M NDPOWSTYPAM UBOZD SAOKY
!
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End module Array

Subroutine SHCS{IG, N, HG, HG1.H)
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Fig. 4.0. Project B.1 foldere in the window of the integrated environment (platform)
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Here, the blocks of software components (files Block1.f90, Block2.f90, Block3.f90,
Block4.f90, Block5.f90), which are described above in chapters 2 and 3, are not formed in the
form of a separate library (the reader of this book and the user of the method can do it
independently), so they are present in the project program package.

The block of user program components for this project consists of the main Program Gaz
program and the Model procedure of the instant process model.

The main program of the user block is as follows:

Program Gaz
I-- The program for determining the periodic solution
I-- of the differential equation describing the forced
I-- vibrations of a body in a gaseous environment
.- dX/dt+Z=E
.- X=colon(x1,x2)
I-- Z=colon(z1,z2)
I--  E=colon(el,e2)
- z1=-x2; z2=c*x1+Alfa*x2*abs(x2)
I--  el=hc*cos(om*t); e2=hs*sin(om*t).
I--  (variables contain only odd harmonics)

Implicit none

real,dimension(18)::Y0
real,dimension(16)::E
integer,dimension(10)::KER
real::C,Alfa,0OM,EPS1,EPS2,H1,HM,Hc,Hs
integer::K,NG,NK

common/MP/C,Alfa !--- shared memory area with the procedure Model
open(1,File='"DaniGaz.dat’,status="'old')
read(1,*)C,Alfa,Hc,Hs

read(1,*)OM,EPS1,EPS2,H1,HM
I----- OM - circular frequency of the fundamental harmonic
leeeme EPS1 — accuracy of integration
leeeme EPS2 — accuracy for Newton’s method
| R H1 - the value of h, at which it is nessesery to specify the root
I----- HM - maximum value h
read(1,*)KER
read(1,*)K
I----- KER - the array of control variables
| R K — the order of the system of differential equations
close(1)
open(l,file='"RezGaz.dat')
write(1,5)
5 format(4X,'Periodic solution of the equation of vibrations of a body in a gaz'/
& 10X,'Entered data:')
write(1,14)C,Alfa,Hc,Hs
14 format(2X,' C =',E10.4,' Alfa =',E10.4,' Hc = ',E10.4,' Hs = ',E10.4)
write(1,15)OM,EPS1,EPS2,H1,HM
15 format(2X,' OM=',E10.4,' EPS1=',E10.4,' EPS2=',E10.4,' H1=',E10.4,' HM=",E10.4)
write(1,16)KER
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16 format(2X,’KER =’,10i5)
write(1,17)K
17 format(2X,' K=',i2)
call SizesV(KER(1),K,KER(8),NG,NK)
write(1,3)NG,NK
3 format(2X,2i5)
R NG - ther size of the simple vector of amplitudes
R NK - ther size of the composite vector of amplitudes
E=0.; E(NG+1)=Hc; E(NG+2)=Hs
Y0=0; YO(NK+1)=OM
I-- formed a composite vector E of amplitudes of forces forcing
I-- and the initial value of the YO vector
write(1,18)
18 format(/2X,'Calculatlon?’)
call HARMOSC(K,YO,E,NK,HM,H1,EPS1,EPS2,KER)
close(1)
stop
end Program Gaz

The following objects are described in the descriptive part of the main program:
— a real one-dimensional | array Yo, deS|gned to store a column vector formed from two

simple vectors of amplitudes X o and X2 r form (1.13a), the circular frequency @ of the

fundamental harmonic and the parameter /;
—real one-dimensional array E, designed to store a composite vector of amplitudes of the

form (1.81), formed from two simple vectors of amplitudes El rand E, . form (1.13g);

— integer one-dimensional array KER of control variables, which has 10 elements;

— real variables C, Alfa, OM - respectively, coefficients a)02 o and frequency @ from
equation (4.1);

— real variables EPS1, EPS2 — relative accuracy of /1 —characteristic calculation and
solution refinement by Newton's iterative method;

— real variables H1,HM — the value of /1 at which the solution should be refined and the

maximum value of /;

— real variables He,Hs — cosine and sine amplitudes from formula (4.9);

— integer variables K,NG,NK — the order of the system of differential equations (4.8), the
number of elements of the simple vector of amplitudes and the number of elements of the
composite vector of amplitudes, respectively.

Next, a shared memory area named MP is described, with which the values of € and
Alfa are passed from the main program to the Model procedure.

The operator part of the program begins by opening the DaniGaz.dat file, which contains
the input data (a printout of this file is given below). Input data is read from this file by read
statements, and then the input file is closed.

The output file RezGaz.dat is then opened and the input data just entered is written to it.
Then, by calling the SizesV procedure (see section 3.1), the NG and NK values are determined
and written to the output file.
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Next, values are assigned to the composite vector of the amplitudes of the forcing force
E and the initial value of the vector of variables Y0 - the amplitudes of the harmonics are given
a zero value and the NK+1 element is assigned the value of the circular frequency @ .

Let's comment on the values assigned to the elements of the KER array (see DaniGaz.dat
file printout and section 3.1 below):

KER(1)= 1 (because variables x, and x, contain only odd harmonics);

KER(2)=1and KER(3)=0 (because equation (4.8) corresponds to the form of entry (1.65));
KER(4)= 0 (because the oscillation is forced);

KER(5)= 0 (assumes that it is not necessary to print the results at each point of the /1 —
characteristic);

KER(6)= 0 (presupposes that if the / —characteristic had special points, then after
passing the first special point, the calculation should be continued);

KER(7)= 0 (because the nonlinearity of the problem is hysteresis-free);

KER(8)= 1 (assumes that only the first harmonic is taken into account at the first stage of
the calculation);

KER(9)= 7 (presupposes that after obtaining a solution taking into account only the first
harmonic, the number of considered harmonics should increase from 1 to 7);

KER(10)= 1 (suggests that the results should be printed after each increment of the
number of considered harmonics).

By the values of the 8th and 9th elements of the KER array, the following solution search
strategy is selected (it is embedded in the HARMOSC procedure): the oscillation in the first
approximation should be sought as harmonic (only the first harmonic is taken into account), and
then the solution should be refined by increasing number of considered harmonics.

The main program ends with a call to the HARMOSC procedure.

The Model procedure, which implements the instantaneous model of the half-cycle
process, has the following form:

Subroutine Model(AL,M,K,MK,XC,YC,ZC,YXC,ZXC,BM)
I—The procedure of the instantaneous (half-period) process model
implicit none
real::AL
integer,intent(in)::M,K,MK
real,dimension(MK)::XC,YC,ZC
real,dimension(MK,K)::YXC,ZXC
real,dimension(K)::X,Z
real,dimension(K,K)::ZX,BM

real::C,Alfa

integer::i

common/MP/C,Alfa !—a shared area of memory with the main program
BM(1,1)=0.; AL=0. I—statements for blocking

YC(1)=0.; YXC(1,1)=0. !—compiler notes

do i=1,M

call DRAWOUTV(K,XC,MK,X, i)

2(1)=-X(2); Z(2)=C*X(1)+Alfa*X(2)*abs(X(2))

ZX(1,1)=0.; ZX(1,2)=-1.; ZX(2,1)=C; ZX(2,2)=2.*Alfa*abs(X(2))
call DRAWUPV(K,Z,ZC,MK, i)
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call DRAWUPM(K,ZX,ZXC,MK,i)
end do
return
end subroutine Model

The interface of the Model procedure (name and list of formal parameters) is defined by
the CALCULU procedure (see section 2.2.3.2).

The formal parameters of the Model procedure are:

- real variable AL is expansion coefficient of the hysteresis loop; is not used in this
problem, because there are no hysteresis nonlinearities of the third group in the problem;

- integer variable M is the number of nodes per half-cycle;

- the integer variable K is the order of the system of equations (4.8);

- integer variable MK is the size of the composite nodal vector;

- real one-dimensional arrays XC,YC,ZC — respectively, composite nodal vectors x_, v,

and Z: of the form (1.118); in this problem, the YC array is not used, because equation (4.11)

has the form (1.65) and does not contain the variable y;
- real two-dimensional arrays YXC, ZXC — composite matrices of nodal differential
parameters S; and S, form (1.127); in this problem, the YXC matrix is not used, because,

as already mentioned above, equation (4.11) has the form (1.65);

- two-dimensional array BM — matrix of coefficients of the system of differential equations,
if they are of the form (1.66) or (1.67); in this problem, this matrix is not used, because equation
(4.11) has the form (1.65).

These formal parameters are used to pass data from the CALCULU procedure to the
Model procedure. Some data is also passed to the Model procedure from the main program using
a shared memory area called MP.

The operative part of the procedure is opened by two operators

BM(1,1)=0.; AL=0.

These operators perform unnecessary assignments. Their purpose is to block the
compiler's message when compiling the procedure that the formal parameters BM and AL in
the body of the procedure are not used. It was already noted above that the AL parameter is
intended for use only in the case when the problem has hysteresis-type nonlinearities. There
are none in this problem, so this parameter is not used. The BM parameter is provided for use
in the case when the system of differential equations is not written in the normal Cauchy form.
In the notation (4.11), the system of equations (4.8) has the normal Cauchy form, so the BM
parameter is not used here.

The same purpose (to block compiler messages) and the following two operators

YC(1)=0.; Y¥YXC(1,1)=0.
In this case, the equation (4.11) does not contain the vector , so the complex nodal vector YC
and the matrix of nodal parameters YXC provided by the procedure are not used.

Since the nonlinearity of the problem belongs to the first group - it is unconditionally
unique (see section 3.2.1), the calculation of the values of the elements of the composite nodal
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vector Z€C and the composite matrix of nodal parameters zXC can occur in an arbitrary
sequence. This sequence is specified by the loop operator, in which the loop parameter (variable
i — the number of the node in the half-cycle) changes from 1 to M. In the loop, for each value of
i, the following actions are performed. The call DRAWOUTV(K,XC,MK,X,i) operator calls the
DRAWOUTV procedure (it is included in Block 5 of the DHM-S), which extracts the values of the
variables in the i-th node from the composite nodal vector XC, which has MK elements in the
form of a vector X with K elements (here - two). Next, values are calculated and assigned to the
elements of the vector z (4.12b) and the derivative matrix zx (4.13). After that, call
DRAWUPV(K,Z,ZC,MK,i) and call DRAWUPM(K,ZX,ZXC,MK,i) operators are called to perform the
procedure DRAWUPV and DRAWUPM (they are included in Block 5 of the DHM-S), which assign
the values of the elements of the matrices Zand zx to the corresponding elements of the matrices
ZC and ZXC (see sections 3.2.2.1, 3.2.2.3 and 3.2.2.4).
The DaniGaz.dat input file looks like this:
625. 12. 32.9 94.4
10. 0.001 0.0001 1.0 1.0

11 0 0 0 0 O 1 7 1
2

The RezGaz.dat source data file - calculation results after the program has been run is as
follows:

Periodic solution of the edquation of vibrations of a body in gaz
Entered data:

C = .6250E+03 Alfa = .1200E+02 Hc = .3290E+02 Hs = .9440E+02
OM= .1000E+02 EPS1= .1000E-02 EPS2= .1000E-03 H1l= .1000E+01
HM = .1000E+01
KER = 1 1 0 0 0 0 0 1 7 1
K= 2
2 4
Calculation:
Number of the highes harmonic = 1
Refined value of 1 root for h=1.000
(the solution was obtained after the 3th iteration)
Amplitudes of harmonics of the 1lst variable:
X1(cl)= -.5008E-04 Xl1l(sl)= .1798E+00 X1(1)= .1798E+00

The value of the variable in nodes of half-period, M = 24

-.5008E-04 .2342E-01 .4649E-01 .6876E-01 .8985E-01 .1094E+00
.1271E4+00 .1426E+00 .1557E+00 .1661E+00 .1737E+00 .1782E+00
.1798E+00 .1783E+00 .1737E+00 .1661E+00 .1557E+00 .1427E+00
.1272E+00 .1095E+00 .8994E-01 .6885E-01 .4658E-01 .2352E-01
Amplitudes of harmonics of the 2st variable:

X2(cl)= .1798E+01 X2(sl)= .5005E-03 X2(1)= .1798E+01
The value of the variable in nodes of half-period, M = 24
.1798E+01 .1783E+01 .1737E+01 .1661E+01 .1557E+01 .1427E+01
.1272E+01 .1095E+01 .8994E+00 .6885E+00 .4658E+00 .2352E+00

.5028E-03-.2342E+00-.4649E+00 -.6876E+00 -.8985E+00 -.1094E+01
-.1271E+01-.1426E+01-.1557E+01 -.1661E+01 -.1737E+01 -.1782E+01
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Refinement of the value of the
1l to N= 7

harmonics

from N=

Added 3rd harmonic

root by increasing the number of

Amplitudes of harmonics of the 1lst variable:

Xl(c 1)= .9549E-03 Xl1(sl)= .1815E+00 X1(1)= .1815E+00
X1l(c 3)= .2189E-02 X1(s3)= -.6959E-02 X1(3)= .7296E-02
Amplitudes of harmonics of the 2st variable:

X2(c 1)= .1815E+01 X2(sl)= -.9549E-02 X2(1)= .1815E+01

X2 (c 3)= -.2088E+00 X2 (s3)= -.6567E-01 X2(3)= .2189E+00

added 5rd harmonic

Amplitudes of harmonics of the 1lst variable:

X1(cl)= .6234E-03 Xl1(sl)= .1821E+00 X1(1)= .1821E+00

X1 (c3)= .2712E-02 X1 (s3)= -.6942E-02 X1(3)= .7453E-02

X1 (c5)= -.1029E-02 X1 (s5)= .4554E-03 X1(5)= .1126E-02
Amplitudes of harmonics of the 2st variable:

X2 (cl)= .1821E+01 X2(sl)= -.6234E-02 X2(1)= .1821E+01

X2 (c3)= -.2083E+00 X2 (s3)= -.8136E-01 X2(3)= .2236E+00

X2 (c5)= .2278E-01 X2(s5)= .5147E-01 X2(5)= .5628E-01

added 7rd harmonic

Amplitudes of harmonics of the 1lst variable:

X1 (cl)= .5420E-03 Xl1l(sl)= .1822E+00 X1(1)= .1822E+00

X1 (c3)= .2783E-02 X1 (s3)= -.6892E-02 X1(3)= .7433E-02

X1 (c5)= -.1051E-02 X1 (s5)= .3961E-03 X1(5)= .1123E-02
X1(c7)= .2339E-03 X1(s7)= .4659E-04 X1(7)= .2385E-03

The value of the variable in nodes of half-period, M = 48
.2508E-02 .1320E-01 .2383E-01 .3439E-01 .4486E-01 .5523E-01
.6548E-01 .7559E-01 .8554E-01 .9529E-01 .1048E+00 .1140E+00
.1229E+00 .1315E+00 .1396E+00 .1473E+00 .1545E+00 .1612E+00
.1674E+00 .1730E+00 .1779E+00 .1821E+00 .1854E+00 .1879E+00
.1894E+00 .1898E+00 .1891E+00 .1872E+00 .1840E+00 .1797E+00
.1743E+00 .1678E+00 .1604E+00 .1522E+00 .1434E+00 .1340E+00
.1243E+00 .1143E+00 .1041E+00 .9368E-01 .8319E-01 .7262E-01
.6198E-01 .5128E-01 .4054E-01 .2978E-01 .1900E-01 .8233E-02
Amplitudes of harmonics of the 2st variable:

X2 (cl)= .1822E+01 X2(sl)= -.5420E-02 X2(1)= .1822E+01

X2 (c3)= -.2068E+00 X2 (s3)= -.8349E-01 X2(3)= .2230E+00

X2 (c5)= .1981E-01 X2(s5)= .5257E-01 X2(5)= .5617E-01

X2 (c7)= .3263E-02 X2(s7)= -.1638E-01 X2(7)= .1670E-01

The value of the variable in nodes of half-period, M = 48
.1638E+01 .1630E+01 .1619E+01 .1607E+01 .1592E+01 .1576E+01
.1556E+01 .1533E+01 .1506E+01 .1473E+01 .1433E+01 .1387E+01
.1334E+01 .1275E+01 .1210E+01 .1140E+01 .1065E+01 .9840E+00
.8969E+00 .8018E+00 .6968E+00 .5800E+00 .4498E+00 .3053E+00
.1470E+00-.2346E-01-.2029E+00 -.3870E+00 -.5705E+00 -.7478E+00
-.9135E+00-.1063E+01-.1194E+01 -.1303E+01 -.1391E+01 -.1460E+01
-.1511E+01-.1548E+01-.1575E+01 -.1595E+01 -.1609E+01 -.1621E+01
-.1630E+01-.1638E+01-.1643E+01 -.1646E+01 -.1646E+01 -.1644E+01
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The results of the calculations are summarized in Table 4.1.

Table 4.1. Results of calculation of body vibrations in a gaseous environment

n Xl(l) X1(3) X1(5) X1(7) X2(1) X2(3) X2(5) X2(7)
1 0,1798 1,798

3 10,1815 0,0073 1,815 0,2188

5 10,1821 0,0074 0,0011 1,821 0,2236 0,0563

7 10,1822 0,0074 0,0011 0,0002 1,822 0,2230 0,0562 0,0167

As we can see from table 4.1, taking into account only the first harmonic, the obtained value
of the amplitude up to the third sign coincides with the one obtained by formula (4.4). Taking into
account the higher harmonics up to and including the seventh, the amplitude of the first harmonic
increases slightly - by 1.3%. Higher harmonics here are more pronounced in the variable x,,

that is, in the speed of movement: the amplitude of the third harmonic of the speed of movement
is 12% of the value of the amplitude of the first harmonic. The table illustrates that in this problem
harmonics with orders greater than 7 can be neglected in calculations.

The above result of the calculation of the forced vibrations of a body in a gas medium, taking
into account the 7th harmonics inclusive, can be represented by formulas. Thus, the time
dependence of a variable x, (body movement speed) can be expressed by a formula

X, [t]71.822 cos(10.0 t) - 0.00542 sin(10.0 t) — 0.2068 cos(30.0 t) — 0.08349 sin(30.0 t) +
+0.01981 cos(50.0 t) + 0.0527 sin(50.0 t) + 0.003263 cos(70.0 t) — 0.01638 sin(70.0 1) .

4.1.2. Example B.2

This example illustrates the calculation of forced oscillations when the nonlinearity in the
system is given analytically and is uniquely unconditional (belongs to the first group of
nonlinearities, see section 3.2.1), and the differential equation describing the oscillations has not
one periodic solution, but three periodic solutions. This is an equation

¥+bx+b,x’ =hcoswt (4.14)
1 2

which is known in the literature as one of the Duffing equations [65]. In particular, it describes
[76] in mechanics - the movement of a load on a spring with nonlinear stiffness, in nuclear
physics - the movement of a particle in a potential field with two potential wells.

We reduce equation (4.14) to the form (1.65):

dx .
—+zZ—-¢e=0
dt
with designation
X z —X
=" z=|7"= S (4.15a,6)
X, zZ, bx, + b,x;
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~ e 0
e = = : (4.158)
e,| | hcoswt

The value of the derivative dZ/dx, which is necessary in the formation of an
instantaneous (half-period) mathematical model, is as follows

dz 0 -1
= ) (416)
dx |3b,x; b

Let's set the following values of coefficients and circular frequency:
b=02; b,=10; w=1.0
and obtain the solution by numerical simulation using DHM-S.
The Program Duffing main program and the Model procedure from the user program
component block for this case look like this:

Program Duffing

I-- Program for determining periodic solutions of the Duffing’s equation

.- dX/dt+Z=E

.- X=colon(x1,x2)

I--  Z=colon(z1,22)

I--  E=colon(el,e2)

- z1=-x2; z2=b1*x2+b2*x1**3

I--  e1=0; e2=h*cost.

I-- (variables contain only odd harmonics)
Implicit none
real,dimension(14)::Y0
real,dimension(12)::E
integer,dimension(10)::KER
real::B1,B2,0M,EPS1,EPS2,H1,HM
integer::K,NG,NK

common/MP/B1,B2 !----- shared memory area with the procedure Model
open(1,File='"DaniDuf.dat',status="old')
read(1,*)B1,B2

read(1,*)OM,EPS1,EPS2,H1,HM
I----- OM - circular frequency of the fundamental harmonic
leeeme EPS1 - accuracy of integfration
leeeme EPS2 — accuracy for Newton’s method
leeeme H1 - the value of h, at which the ruquired duck root
I----- HM — maximum value h
read(1,*)KER
read(1,*)K
loeeee KER — array of control variables
loeeee K — the order of the system of differential equations
close(1)
open(1,file='"RezDuf.dat')
write(1,5)
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5 format(4X,'Periodic solutions of the Duffing’s equation’ /10X,'Entered data:')
write(1,14)B1,B2
14 format(2X,' B1=',E10.4,' B2=',E10.4)
write(1,15)OM,EPS1,EPS2,H1,HM
15 format(2X,' OM=',E10.4,' EPS1=',E10.4,' EPS2='E10.4,' H1=',E10.4,' HM=",E10.4)
write(1,16)KER
16 format(2X,’KER=",10i5)
write(1,17)K
17 format(2X,' K=',i2)
3 format(2X,1015)
call SizesV(KER(1),K,KER(8),NG,NK)
write(1,3)NG,NK
R NG - the size of the simple vector of amplitudes
R NK - the size of the composite vector of amplitudes
E=0.; E(NG+1)=1.0
Y0=0; YO(NK+1)=OM
I-- Formed the vector of amplitudes E of forcing forces
I-- and the initial value of the YO vector
write(1,13)
13 format(/2X,'Calculatlion:’)
call HARMOSC(K,Y0,E,NK,HM,H1,EPS1,EPS2,KER)
cose(1)
stop
end Program Duffing

Subroutine Model(AL,M,K,MK,XC,YC,ZC,YXC,ZXC,BM)
I-- The procedure of the instantaneous half-period process model
Implicit none
real::AL
integer,intent(in)::M,K,MK
real,dimension(MK)::XC,YC,ZC
real,dimension(MK,K)::YXC,ZXC
real,dimension(K)::X,Z
real,dimension(K,K)::ZX,BM
real::B1,B2
integer::i
common/MP/B1,B2 I-- A shared area of memory with the main program
BM(1,1)=0.; AL=0.
YC(1)=0.; YXC(1,1)=0.
doi=1,M
call DRAWOUTV(K,XC,MK,X,i)
Z(1)=-X(2)
Z(2)=B1*X(2)+B2*X(1)**3
ZX(1,1)=0.; ZX(1,2)=-1.
ZX(2,1)=3.*B2*X(1)**2; ZX(2,2)=B1
call DRAWUPV(K,Z,ZC,MK,i)
call DRAWUPM(K,ZX,ZXC,MK,i)
end do
return
end subroutine Model
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The RezDuf.dat file, designed to save the results, receives the following data after the
program has been run:

Periodic solutions of the Duffing’s equation
Entered data:

Bl= .2000E+00 B2= .1000E+01

OM= .1000E+01 EPS1= .1000E-02 EPS2= .1000E-03

Hl= .3000E+00 HM= .6000E+00

KER = 1 1 0 0 0 0 0 5 0 0

K=2
6 12

Calculation
Number of the highest harmonic = 5

Refined value 1 root at h= .300

(the solution was obtained after the 3-rd iteration)

Amplitudes of harmonics of the 1-st variable:

X1(cl)= -.3100E+00 X1(sl)= .6709E-01 X1(1)= .3172E+00
X1 (c3)= -.6841E-03 X1(s3)= .5845E-03 X1(3)= .8998E-03
X1(c5)= -.1062E-05 X1(s5)= .2510E-05 X1(5)= .2725E-05
Amplitudes of harmonics of the 2-st variable:

X2 (cl)= .6709E-01 X2 (sl)= .3100E+00 X2(1)= .3172E+00
X2 (c3)= .1753E-02 X2 (s3)= .2052E-02 X2 (3)= .2699E-02
X2 (c5)= .1262E-04 X2 (s5)= .5290E-05 X2 (5)= .1369E-04

Refined value 2 root at h= .300
(the solution was obtained after the 2-rd iteration)

Amplitudes of harmonics of the 1-st variable:

X1(cl)= -.7394E+00 X1 (sl)= .6751E+00 X1(1)= .1001E+01
X1 (c3)= .2232E-01 X1 (s3)= .2497E-01 X1(3)= .3349E-01
X1l (c5)= .8579E-03 Xl1l(s5)= -.6993E-03 X1(5)= .1107E-02
Amplitudes of harmonics of the 2-st variable:

X2 (cl)= .6751E+00 X2 (sl)= .7394E+00 X2(1)= .1001E+01
X2 (c3)= .7491E-01 X2 (s3)= -.6696E-01 X2 (3)= .1005E+00
X2 (c5)= -.3495E-02 X2 (s5)= -.4290E-02 X2 (5)= .5533E-02

Refined value 3 root at h= .300
(the solution was obtained after the 3-rd iteration)

Amplitudes of harmonics of the 1-st variable:

X1(cl)= .6864E+00 X1(sl)= .9841E+00 X1(1)= .1200E+01
X1 (c3)= -.5973E-01 X1 (s3)= .2146E-01 X1(3)= .6347E-01
X1 (c5)= -.1277E-03 X1 (s5)= -.3154E-02 X1(5)= .3157E-02
Amplitudes of harmonics of the 2-st variable:

X2 (cl)= .9841E+00 X2 (sl)= -.6864E+00 X2(1)= .1200E+01
X2 (c3)= .6438E-01 X2 (s3)= .1792E+00 X2(3)= .1904E+00
X2 (c5)= -.1577E-01 X2 (s5)= .6382E-03 X2(5)= .1578E-01
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It should be noted that in this case, the KER(5) element of the KER control array was
assigned a zero value, and therefore all /1 —characteristic points, except for / = h, , were

not recorded in the RezDuf.dat array. If we set the value 1 to the element KER(5), then it would

be possible to trace that the s —characteristic when changing 7 from zero to 0.6 has a loop-
like character and two special points, which the algorithm of the HARMOSC procedure
successfully passed, using the technique of inverting differential equations (see section 1.5.7).

The h —characteristic passed through the point / = h, =0.3 three times, and thus all three

periodic solutions of equation (4.14) were found. Each of the solutions is refined by Newton's
iterative method.

When solving this problem, the KER(9) element of the KER control array was assigned a
value of zero, and the KER(8) element was assigned a value of 5, i.e., the following strategy for
finding a solution was set: as a polyharmonic oscillation with the first, third, and nth harmonics
without further increasing the number of harmonics taken into account.

4.1.3. Example B.3

In the previous section, the numerical modeling of forced oscillations was considered,
when the nonlinearity in the system is given analytically and is unambiguously unconditional
(belongs to the first group), and the differential equation to be solved has three periodic solutions.
In the example considered in this section, forced nonlinear oscillations in an object with
unambiguous unconditional nonlinearity are also modeled, but here it is not specified
analytically, but by a table. The differential equations
describing the considered oscillations, at certain parameter
values, also have, as in the previous example, three periodic

¢ [I] ‘ solutions. | | . N
This example is a calculation of the characteristics
of a simple series ferroresonant circuit shown in Fig. 4.1,
which is formed from a linear active resistance », a
—C nonlinear inductance (saturation choke) with magnetization

characteristic ¢ =¢ [i] and capacitance C [11]. The
sought characteristic of the circuit is the dependence of the

U=U_coswt

Fig. 4.1. Sequential ferro- effective value 1 of its current on the amplitude of the
resonance circuit app”ed voItage U .
The processes in this circuit are described by the following equations:

d :

—¢+rz+uc =hU, coswt;

dt

J i (4.17)

u .
< —-—i=0,
dt C
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where I - circuit current; @ - flux coupling of the coil; £, - capacitor voltage.

This system of differential equations is reduced to the form of notation of the vector
differential equation (1.64), if we accept

=X i ol e _ el AU, coswt
X = = ; = = ; e = = ,
x2 uc y2 uc 82 0
z, rit+u, rXx tXx, (4.18)
zZ= = 1 i 1 N
z _ _
2 C 1
The matrices of "instant" differential parameters for this case have the form
d
iy |9 o a4z | 71
e di X T 1 ol (4.19)
X 0 1 X C

In [39], the calculation of nonlinear oscillations in the figure shown in Fig. 4.1 circuit (in
[39] it is Fig. 3.29) by the analytical method of slowly changing amplitudes when approximating
the magnetization characteristic of choke by the formula

[i1= L=y, 1), (4.20)

where L,,y, — constants. Itis also noted that with such an approximation of the magnetization

curve, the result can be considered adequate for the process in the circuit only when the current
changes in the interval of its values, in which dependence (4.20) satisfactorily approximates the
real magnetization curve. However, before calculating the oscillations, the range of possible
current values is unknown in advance. Difficulties with the selection of analytical approximations
of nonlinearities of magnetization curves progressively increase with the complexity of the circuit,
which can be multi-circuit and contain several chokes (coils).

When numerically modeling periodic processes in the scheme of fig. 4.1 with the use of
DHM-S, the non-linearity of the scheme - the dependence of the flux lincage ¢ of choke on

the circuit current Z - is given by the table using interpolation.

It should be noted that the algorithms for calculating periodic processes by the differential-
harmonic method are insensitive to the smoothness of the functions used to approximate the
characteristics of nonlinear elements. And if in the numerical integration over time of nonlinear
differential equations (calculation of transient processes) it is necessary to use sufficiently
smooth interpolation polynomials of the second and higher degrees, including quadratic and
cubic splines [48], then in the calculation of periodic processes by the differential-harmonic
method for the approximation of nonlinear characteristics it is perfectly permissible to use tables
and perform linear interpolation, i.e. approximate them with a broken lines (see clause 2.2.4.2).
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The block of user software components for calculating the characteristics of the
ferroresonance circuit consists of: the main program Program Ferorez and the Model procedure
of the instantaneous model of the process on one half-cycle.

The standard OUTP procedure is used to process the results and store them (it is
included in Block 5 of the DHM-S), so it is not included in the block of user software components.

Next is a printout of the main Program Ferorez program of the block of user software
components.

Program Ferorez
I-- Characteristic calculation program ferroresonance circuit
I-- by determining periodic solutions X=X(t) vector nonlinear differential equation
I-- states of the ferroresonance circuit
I--  dY/dt+Z=E
I-- X=colon(x1,x2)
I-- Y=colon(y1,y2)
I--  Z=colon(z1,z2)
I--  E=colon(el,e2)
I--  x1=i (current); x2=Uc (capacitor voltage)
.- y1=Psi (flux lincage); y2=Uc
.- z1=R*i+Uc; z2=-i/C, C - capacitor, R - resistance
I--  el=h*Um%*sin(OM*t); e2=0.
I-- (the loop current contains only odd harmonics)
|

Implicit none
real,dimension(14)::Y0
real,dimension(12)::E
integer,dimension(10)::KER
real,dimension(30)::H
real::B0,STEP,Um,R,C,OM,H1,HM,EPS1,EPS2
integer::NT,K,NG,NK,i
common/MP/H,NT,B0,STEP,R,C !----- common area with procedure Model
open(1,File='DaniFer.dat',status="old’)
Read(1,*)NT
Read(1,*)B0,STEP
Read(1,*)(H(i),i=1,NT)
Read(1,*)Um,R,C,0M
Read(1,*)H1,HM,EPS1,EPS2
Read(1,*)KER
Read(1,*)K
Close(1)
open(1,file='RezFer.dat’)
write(1,5)
5 format(4X,'Entered data:')

write(1,10)

10 format(2X,'Weber-ampere characteristic of the choke:')
write(1,3)NT
write(1,4)B0,STEP
write(1,4)(H(i),i=1,NT)
write(1,11)
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11 format(2X,'Other circle parameters:')
write(1,14)Um,R,C,OM
14 format(2X,'Um=',E10.4,' R=',E10.4,' C=',E10.4,'0M=',E10.4)
write(1,12)
12 format(2X,'Other data:')
write(1,15)H1,HM,EPS1,EPS2
15 format(2X,' H1=',E10.4,' HM=',E10.4 /2X,'EPS1=',E10.4,' EPS2=',E10.4)
write(1,3)KER
write(1,17)K
17 format(2X,' K=',i2)
3 format(2X,10I5)
4 format(2X,4E12.4)
call SizesV(KER(1),K,KER(8),NG,NK)
write(1,3)NG,NK
| R NG - the size of the simple vector of amplitudes
leeeme NK - the size of the composite vector of amplitudes
E=0.; E(1)=Um
Y0=0; YO(NK+1)=OM
I-- Formed the amplitude vector E of the coercive forces
I-- and the initial value of the Y0 vector.
write(1,13)
13 format(/2X,'Calculatlion?’)
call HARMOSC(K,Y0,E,NK,HM,H1,EPS1,EPS2,KER)
close(1)
stop
end Program Ferorez

The main program of this package performs:
- description of variables, including description and declaration of sizes of two arrays:
Y0(14) and E(12). Y0 is a column matrix formed from a vector of current amplitudes, a vector of

capacitance voltage amplitudes, a circular frequency @ and a parameter /1. The specified
dimensions of these arrays allow you to set the maximum order of the harmonics taken into
account no higher than 5 (harmonics of odd orders only are taken into account). If a higher value
of the maximum harmonic order is specified, the sizes of these arrays must be increased;

- a description of the shared memory area /MP/, which is used to transfer data to the Model
procedure: the magnetization curve table (H- the table of the nonlinear part of the characteristic,
NT — the number of nodes in the table, B0 — the first value of the abscissa of the nonlinear part,
STEP - the step of the table ), active resistance R and capacitance C;

- entering input data from the DaniFer.dat file;

- output to the RezFer.dat output file of input data;

- appeal to the SizesV procedure;

- formation of the forcing force vector E;

- assignment of the initial value of the Yo array;

- referring to the HARMOSC procedure for calculating the h-characteristic and specifying

the solution for the given value of /.
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Next is a printout of the Model procedure, which implements an instantaneous (half-
period) model of the periodic process in the scheme.

Subroutine Model(AL,M,K,MK,XC,YC,ZC,YXC,ZXC,BM)
I-- The procedure of the "instant" model of the process on one half-cycle

implicit none
real::AL
integer,intent(in)::M,K,MK
real,dimension(MK)::XC,YC,ZC
real,dimension(MK,K)::YXC,ZXC
real,dimension(K)::X,Y,Z
real,dimension(K,K)::YX,ZX,BM
real,dimension(30)::H
integer::NT,i
real::B0,STEP,R,C,LD
common/MP/H,NT,B0,STEP,R,C
I-- A shared area of memory with the main program

BM(1,1)=0.; AL=0.
do i=1,M

call DRAWOUTV(K,XC,MK,X, i)

call INTLIN(X(1),Y(1),LD,BO,STEP,H,NT)

leeeee by interpolation calculated Y(1)=Psi and derivative LD=dPsi/di
Y(2)=X(2)

Z(1)=R*X(1)+X(2)

Z(2)=-X(1)/C

YX(1,1)=LD

YX(1,2)=0.

YX(2,1)=0.

YX(2,2)=1.

ZX(1,1)=R

ZX(1,2)=1.

ZX(2,1)=-1./C

ZX(2,2)=0.

call DRAWUPV(K,Y,YC,MK,i)

call DRAWUPV(K,Z,ZC,MK,i)

call DRAWUPM(K,YX,YXC,MK,i)

call DRAWUPM(K,ZX,ZXC,MK,i)
end do
return
end Subroutine Model

The first two executed statements of the procedure BM(1,1)=0. and AL=0. perform
unnecessary operations and are present only in order not to provoke comments by the compiler,
because the formal parameters BM and AL are not used here: the parameter BM is not used
because equation (4.17) does not have a matrix of coefficients, that is, it does not have the form
(1.66) or (1.67), and the AL parameter is not used, because there are no elements in the problem
with hysteresis characteristics.

The main operator of the model is the cycle operator, in which the variable i is the
number of a node in a half-cycle. In this cycle, the following is performed:

—the call DRAWOUTV(K,XC,MK,X,i) operator calls the DRAWOUTYV procedure (it is included
in Block 5 of the DHM-S) for execution, which “extracts” the values of the variables x, (circuit
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current) and x, (condenser voltage) from the composite nodal vector ) in the Z -th node of the

half-period and forms a vector X from them:

- the operator call INTLIN(X(1),Y(1),LD,B0,STEP,H,NT) is called for execution the INTLIN
procedure (it is included in Block 4 of the DHM-S), which, by means of linear interpolation,
determines from the table that the choke magnetization curve, the value of flux lincage of choke
and differential inductance is specified by it;

— a group of assignment operators gives values to arrays Y, Z, YX and ZX, according to

formulas (4.18) and (4.19);

— operators call DRAWUPV(K,Y,YC,MK,i); call DRAWUPV(K,Z,ZC,MK,i) the elements of the
arrays Y and Z are "inserted" into the arrays YC and zC (the latter store the values of the
composite nodal vectors of the form (1.118)) in places corresponding to the Z -th node of the
half-period;

— operators call DRAWUPM(K,YX,YXC,MK,i); call DRAWUPM(K,ZX,ZXC,MK,i) the elements
of the YX and zx arrays are "inserted" into the YXC and ZXC arrays (the latter store the values
of the composite matrices of nodal differential parameters of the form (1.127) ) in the places
corresponding to the Z -th node of the half-period.

Printout of DaniFer.dat file with input data:

1.0 0.2
0.1 0.115 0.126 0.135 0.142 0.148 0.153 0.157

0.16 0.162 0.1635
100. 0.3 0.001 314.16
0.32 0.5 0.01 0.001
i1 0 o0 0 1 0 0O 5 0 O
2
The first four lines of this file are the numerical data
02* %[ Web of the tabulated choke magnetization curve shown in
Fig. 4.2. The number 11 in the first line is the number
015 of table nodes. Two numbers in the second line: 1.0 -
the value of the current from which the nonlinear part
01 begins; 0.2 - table step (table with equidistant nodes).
The next 11 numbers in the third and fourth lines are
0.05 the value of the flow coupling of the throttle in the
; 4 Nodes of the table. Fifth line: 100.0 - for U/, ; 0.3 -
0 1 2 3 4 for r; 0.001—for C;314.16 -for . The sixth

Fig. 4.2. Choke magnetization curve line: 0.32 — for H1 (the value of the parameter /s at
which the solution should be refined by Newton's

method); 0.5 — for HM (maximum parameter value /); 0.01 - for the accuracy g, of the
characteristic calculation; 0.001 - for accuracy &, when refining by Newton's method. The

seventh line is the value of the elements of the KER control array: the first number is 1 - the
variables contain only odd harmonics; the second and third numbers are 0 and 0 - the system
of equations (4.17) is reduced to the form (1.64); fourth number 0 — oscillations are forced; fifth
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number 1 - it is necessary to print data for all /# —characteristic points; the sixth number is 0 —
there is no need to stop the calculation upon reaching the first special point; the seventh number
is 0 — there are no hysteresis characteristics in the problem; the eighth number 5 is the number
of the highest harmonic taken into account; the ninth and tenth numbers 0 and 0 - no increase
in the number of considered harmonics is assumed, the solution is immediately sought as a
polyharmonic oscillation with harmonics from the first to the fifth without a subsequent increase
in the number of considered harmonics.
The following is a printout of the RezFer.dat file with the output data (result):

Entered data:

Weber-ampere characteristic of the choke:
11
.1000E+01 .2000E+00
.1000E+00 .1150E+00 .1260E+00 .1350E+00
.1420E+00 .1480E+00 .1530E+00 .1570E+00
.1600E+00 .1620E+00 .1635E+00

Other circle parameters:

Um = .1000E+03 R = .3000E+00 C = .1000E-02 OM = .3142E+03

Other data:

Hl1 = .3200E+00 HM = .5000E+00

EPS1 = .1000E-01 EPS2 = .1000E-02

KER = 1 0 0 0 1 0 0 5 0 0
K=2

NG = 6 NK = 12

Calculation
Number of the highest harmonic = 5
The h-characteristic is calculating

Parameter h= .05100, at this step variable 14 is independent
Amplitudes of harmonics of the 1l-st variable:

X1l (cl)= .1919E-02 Xl1l(sl)= .1806E+00 X1(1)= .1806E+00

X1 (c3)= -.1000E-07 X1 (s3)= -.1282E-07 X1(3)= .1626E-07

X1 (c5)= -.9916E-08 X1 (s5)= .6184E-08 X1(5)= .1169E-07
Amplitudes of harmonics of the 2-st variable:

X2 (cl)= -.5748E+00 X2(sl)= .6106E-02 X2(1)= .5748E+00

X2 (c3)= -.8978E-06 X2(s3)= .1498E-06 X2(3)= .9102E-06

X2 (c5)= -.8929E-06 X2(s5)= .2132E-06 X2(5)= .9180E-06
Parameter h= .17600, at this step variable 14 is independent
Amplitudes of harmonics of the 1-st variable:

X1l(cl)= .6621E-02 Xl1l(sl)= .6232E+00 X1(1)= .6233E+00

X1 (c3)= -.3453E-07 X1 (s3)= -.4424E-07 X1(3)= .5612E-07

X1 (c5)= -.3422E-07 X1 (s5)= .2134E-07 X1(5)= .4033E-07
Amplitudes of harmonics of the 2-st variable:

X2 (cl)= -.1984E+01 X2(sl)= .2107E-01 X2(1)= .1984E+01

X2 (c3)= -.3098E-05 X2(s3)= .5171E-06 X2(3)= .3141E-05

X2 (c5)= -.3081E-05 X2(s5)= .7359E-06 X2(5)= .3168E-05

Refined value 1 root at h= .320
(the solution was obtained after the 3-rd iteration)

Amplitudes of harmonics of the 1-st variable:
X1l(cl)= .1244E-01 X1(sl)= .1154E+01 X1(1)= .1154E+01
X1l (c3)= -.4680E-03 X1l (s3)= -.1506E-01 X1(3)= .1506E-01
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X1(c5)= .4823E-03 X1 (s5)= .9395E-02 X1(5)=
Amplitudes of harmonics of the 2-st variable:

X2 (cl)= -.3671E+01 X2(sl)= .3959E-01 X2(1)=
X2 (c3)= .1597E-01 X2(s3)= -.4957E-03 X2(3)=
X2 (c5)= -.5986E-02 X2(s5)= .3083E-03 X2(5)=

Parameter h=
Amplitudes of harmonics of the 1l-st variable:
X1l(cl)= .1277E-01 X1(sl)= .1199E+4+01 X1(1)=
X1l (ec3)= -.1131E-03 X1(s3)= -.1322E-01 X1(3)=
X1 (c5)= .7192E-04 X1(s5)= .3720E-02 X1(5)=
Amplitudes of harmonics of the 2-st variable:

X2 (cl)= -.3815E+01 X2(sl)= .4064E-01 X2(1)=
X2 (c3)= .1402E-01 X2(s3)= -.1189E-03 X2(3)=
X2 (c5)= -.2374E-02 X2 (s5)= .4723E-04 X2(5)=

Parameter h= .41790, at this step variable 2 is
Amplitudes of harmonics of the 1l-st variable:
X1l(cl)= .2017E-01 Xl1l(sl)= .1774E+01 X1(1)=
X1 (c3)= -.2506E-02 X1(s3)= -.1671E+00 X1(3)=
X1 (c5)= .8612E-03 X1 (s5)= .4959E-01 X1(5)=
Amplitudes of harmonics of the 2-st variable:

X2 (cl)= -.5647E+01 X2(sl)= .6419E-01 X2(1l)=
X2 (c3)= .1773E+00 X2 (s3)= -.2657E-02 X2(3)=
X2 (c5)= -.3157E-01 X2(s5)= .5502E-03 X2(5)=

Parameter h= .45149, at this step variable 2 is
Amplitudes of harmonics of the 1l-st variable:
X1l(cl)= .3560E-01 Xl1l(sl)= .2350E+01 X1 (1)=
X1 (c3)= -.2027E-01 X1 (s3)= -.4279E+00 X1 (3)=
X1(c5)= .1296E-01 X1 (s5)= .1409E+00 X1(5)=
Amplitudes of harmonics of the 2-st variable:

X2 (cl)= -.7479E+01 X2(sl)= .1133E+00 X2(1)=
X2 (c3)= .4539E+00 X2(s3)= -.2150E-01 X2(3)=
X2 (c5)= -.8968E-01 X2(s5)= .8255E-02 X2(5)=

Parameter h= .46160, at this step variable 2 is
Amplitudes of harmonics of the 1l-st variable:

X1l (cl)= .2130E+00 X1 (sl)= .5228E+01 X1 (1)=
X1 (c3)= -.2734E+00 X1 (s3)= -.1986E+01 X1 (3)=
X1 (c5)= .1482E+00 X1 (s5)= .6047E+00 X1 (5)=
Amplitudes of harmonics of the 2-st variable:

X2 (cl)= -.1664E+02 X2(sl)= .6778E+00 X2(1)=
X2 (c3)= .2107E+01 X2(s3)= -.2901E+00 X2(3)=
X2 (c5)= -.3849E+00 X2 (s5)= .9433E-01 X2(5)=

Parameter h= .45161, at this step variable 2 is
Amplitudes of harmonics of the 1-st variable:

X1l (cl)= .6507E+00 X1l (sl)= .8826E+01 X1(1)=
X1l (c3)= -.8147E+00 X1 (s3)= -.3381E+01 X1 (3)=
X1 (c5)= .2731E+00 X1 (s5)= .6126E+00 X1(5)=
Amplitudes of harmonics of the 2-st variable:

X2 (cl)= -.2809E+02 X2(sl)= .2071E+01 X2(1)=
X2 (c3)= .3586E+01 X2(s3)= -.8643E+00 X2(3)=
X2 (c5)= -.3900E+00 X2(s5)= .1739E+00 X2(5)=

Parameter h=

.9407E-02

.3672E+01
.1597E-01
.5994E-02

.33225, at this step variable 14 is independent

.1199E+01
.1322E-01
.3720E-02

.3816E+01
.1402E-01
.2374E-02

independent

.1775E+401
.1671E+00
.4959E-01

.5648E+01
.1773E+00
.3158E-01

independent

.2350E+01
.4284E+00
.1415E+00

.7480E+01
.4544E+00
.9006E-01

independent

.5232E+01
.2005E+01
.6225E+00

.1665E+02
.2127E+01
.3963E+00

independent

.8849E+01
.3477E+01
.6708E+00

.2817E+02
.3689E+01
.4270E+00

.34430, at this step variable 14 is independent

139




Amplitudes of harmonics of the 1-st variable:

X1l (cl)= .6777E+01 X1l(sl)= .2530E+02 X1(1)=
X1 (c3)= -.4689E+01 X1 (s3)= -.4414E+01 X1(3)=
X1(c5)= -.1396E+01 X1 (s5)= -.5603E+00 X1(5)=
Amplitudes of harmonics of the 2-st variable

X2 (cl)= -.8052E+02 X2(sl)= .2157E+02 X2(1)=
X2 (c3)= .4683E+01 X2(s3)= -.4975E+01 X2(3)=
X2 (c5)= .3566E+00 X2(s5)= -.8885E+00 X2(5)=

Refined value 2 root at h= .320

.2619E+02
.6440E+01
.1504E+01

.8336E+02
.6832E+01
.9574E+00

(the solution was obtained after the 3-rd iteration)

Amplitudes of harmonics of the 1-st variable:

X1l (cl)= .8393E+01 Xl1l(sl)= .2787E+02 X1(1)=
X1 (c3)= -.5414E+01 X1 (s3)= -.4329E+01 X1(3)=
X1(c5)= -.1726E+01 X1 (s5)= -.2838E+00 X1(5)=
Amplitudes of harmonics of the 2-st variable:

X2 (cl)= -.8870E+02 X2(sl)= .2671E+02 X2(1)=
X2 (c3)= .4592E+01 X2 (s3)= -.5744E+01 X2(3)=
X2 (c5)= .1805E+00 X2(s )= -.1099E+01 X2(5)=

Parameter h= .31757, at this step variable 14 is independent

Amplitudes of harmonics of the 1l-st variable:

X1(cl)= .9745E+01 X1l (sl)= .2882E+02 X1(1)=
X1 (c3)= -.5887E+01 X1 (s3)= -.3668E+01 X1(3)=
X1 (c5)= -.2023E+01 X1 (s5)= -.1108E+00 X1(5)=
Amplitudes of harmonics of the 2-st variable:

X2 (cl)= -.9174E+02 X2(sl)= .3102E+02 X2(1)=
X2 (c3)= .3891E+01 X2 (s3)= -.6246E+01 X2(3)=
X2 (c5)= .7037E-01 X2(s5)= -.1287E+01 X2(5)=

Parameter h= .25073, at this step variable 14 is independent

Amplitudes of harmonics of the 1l-st variable:

X1 (cl)= .2195E+02 X1l (sl)= .3566E+02 X1(1)=
X1(c3)= -.8121E+01 X1 (s3)= .1117E+01 X1(3)=
X1 (c5)= -.1599E+01 X1 (s5)= .2856E+01 X1 (5)=
Amplitudes of harmonics of the 2-st variable:

X2 (cl)= -.1135E+03 X2(sl)= .6986E+02 X2(1)=
X2 (c3)= -.1185E+01 X2 (s3)= -.8616E+01 X2(3)=
X2 (c5)= -.1818E+01 X2(s5)= -.1018E+01 X2(5)=

Parameter h= .20046, at this step variable 2 is
Amplitudes of harmonics of the 1-st variable:

X1l (cl)= .4593E+02 Xl1l(sl)= .3062E+02 X1(1)=
X1(c3)= -.1614E+01 X1 (s3)= .9243E+01 X1(3)=
X1(c5)= .3957E+01 X1 (s5)= -.7017E+00 X1(5)=
Amplitudes of harmonics of the 2-st variable:
X2 (cl)= -.9745E+02 X2(sl)= .1462E+03 X2(1)=
X2 (c3)= -.9806E+01 X2(s3)= -.1713E+01 X2(3)=
X2 (c5)= .4465E+00 X2 (s5)= .2519E+01 X2(5)=
Parameter h= .19796, at this step variable 2 is
Amplitudes of harmonics of the 1l-st variable:
X1l(cl)= .5010E+02 X1l (sl)= .2761E+02 X1(1)=
X1(c3)= .6282E+00 X1 (s3)= .9425E+01 X1(3)=
X1 (c5)= .3361E+01 X1(s5)= -.2444E+01 X1(5)=

Amplitudes of harmonics of the 2-st variable:

.2910E+02
.6932E+01
.1749E+01

.9263E+02
.7354E+01
.1114E+01

.3043E+02
.6936E+01
.2026E+01

.9684E+02
.7359E+01
.1289E+01

.4187E+02
.8198E+01
.3273E+401

.1333E+03
.8697E+01
.2084E+01

independent

.5520E+02
.9383E+01
.4018E+01

.1757E+4+03
.9954E+01
.2558E+01

independent
.5720E+02

.9446E+01
.4156E+01
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X2 (cl)= -.8787E+02 X2(sl)= .1594E+03 X2(1)= .1821E+03

X2 (c3)= -.9999E+01 X2 (s3)= .6664E+00 X2(3)= .1002E+02
X2 (c5)= .1555E+01 X2 (s5)= .2139E+01 X2(5)= .2645E+01
Parameter h= .19628, at this step variable 2 is independent
Amplitudes of harmonics of the 1-st variable:

X1 (cl)= .5770E+02 X1l(sl)= .2008E+02 X1(1)= .6109E+02
X1(c3)= .4950E+01 X1 (s3)= .8005E+01 X1(3)= .9412E+01
X1 (c5)= .2322E+00 X1 (s5)= -.4465E+01 X1(5)= .4471E+01
Amplitudes of harmonics of the 2-st variable:

X2 (cl)= -.6392E+02 X2(sl)= .1836E+03 X2(1)= .1944E+03
X2 (c3)= -.8493E+01 X2(s3)= .5251E+01 X2(3)= .9985E+01
X2 (c5)= .2842E+01 X2 (s5)= .1478E+00 X2(5)= .2846E+01

Parameter h= .24834, at this step variable 2 is independent
Amplitudes of harmonics of the 1-st variable:

X1(cl)= .7383E+02 X1(sl)= -.1923E+02 X1(1)= .7629E+02
X1(c3)= .6192E+01 X1 (s3)= -.5864E+01 X1(3)= .8528E+01
X1 (c5)= -.1529E+01 X1 (s5)= .4633E+01 X1(5)= .4879E+01
Amplitudes of harmonics of the 2-st variable:

X2 (cl)= .6121E+02 X2(sl)= .2350E+03 X2(1)= .2428E+03
X2 (c3)= .6222E+01 X2(s3)= .6568E+01 X2(3)= .9047E+01
X2 (c5)= -.2949E+01 X2 (s5)= -.9731E+00 X2(5)= .3106E+01

Parameter h= .30532, at this step variable 14 is independent
Amplitudes of harmonics of the 1l-st variable:

X1 (cl)= .7583E+02 X1l (sl)= -.3982E+02 X1(1)= .8565E+02
X1 (c3)= .5660E+00 X1 (s3)= -.8466E+01 X1(3)= .8485E+01
X1l (c5)= .3588E+01 X1 (s5)= .3239E+01 X1(5)= .4833E+01
Amplitudes of harmonics of the 2-st variable:

X2 (cl)= .1267E+03 X2(sl)= .2413E+03 X2(1)= .2726E+03
X2 (c3)= .8982E+01 X2(s3)= .6002E+00 X2(3)= .9002E+01
X2 (c5)= -.2061E+01 X2 (s5)= .2284E+01 X2(5)= .3076E+01

Refined value 3 root at h= .320
(the solution was obtained after the 3-rd iteration)

Amplitudes of harmonics of the 1l-st variable:

X1 (cl)= .7516E+02 X1l (sl)= -.4765E+02 X1(1)= .8899E+02
X1 (c3)= -.1461E+01 X1 (s3)= -.9241E+01 X1(3)= .9355E+01
X1(c5)= .4776E+01 X1 (s5)= .1572E+01 X1(5)= .5028E+01
Amplitudes of harmonics of the 2-st variable:

X2 (cl)= .1517E+03 X2(sl)= .2392E+03 X2(1)= .2832E+03
X2 (c3)= .9803E+01 X2(s3)= -.1550E+01 X2(3)= .9925E+01
X2 (c5)= -.1001E+01 X2 (s5)= .3040E+01 X2(5)= .3201E+01

Parameter h= .35726, at this step variable 14 is independent
Amplitudes of harmonics of the 1-st variable:

X1 (cl)= .7658E+02 X1l (sl)= -.5233E+02 X1(1)= .9275E+02
X1 (c3)= -.2501E+01 X1 (s3)= -.8261E+01 X1(3)= .8631E+01
X1 (c5)= .4818E+01 X1 (s5)= .8092E+00 X1(5)= .4885E+01
Amplitudes of harmonics of the 2-st variable:

X2 (cl)= .1665E+03 X2(sl)= .2437E+03 X2(1)= .2952E+03
X2 (c3)= .8764E+01 X2 (s3)= -.2653E+01 X2(3)= .9157E+01
X2 (c5)= -.5149E+00 X2 (s5)= .3067E+01 X2(5)= .3110E+01

Parameter h= .43297, at this step variable 2 is independent
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Amplitudes of harmonics of the 1-st variable:

X1l(cl)= .7764E+02 X1l (sl)= -.6656E+02 X1(1)= .1023E+03
X1(c3)= -.5058E+01 X1 (s3)= -.7139E+01 X1(3)= .8749E+01
X1 (c5)= .4549E+01 X1 (s5)= -.1651E+01 X1(5)= .4840E+01
Amplitudes of harmonics of the 2-st variable:

X2 (cl)= .2118E+03 X2(sl)= .2471E+03 X2(1)= .3255E+03
X2 (c3)= .7574E+01 X2 (s3)= -.5366E+01 X2(3)= .9282E+01
X2 (c5)= .1051E+01 X2(s5)= .2896E+01 X2(5)= .3081E+01

Parameter h= .50740, at this step variable 14 is independent
Amplitudes of harmonics of the 1l-st variable:

X1(cl)= .7908E+02 X1l(sl)= -.7798E+02 X1(1)= .1111E+03
X1 (c3)= -.6292E+01 X1 (s3)= -.6074E+01 X1(3)= .8746E+01
X1(c5)= .3726E+01 X1 (s5)= -.2837E+01 X1(5)= .4683E+01
Amplitudes of harmonics of the 2-st variable:

X2 (cl)= .2482E+03 X2(sl)= .2517E+03 X2(1)= .3535E+03
X2 (c3)= .6444E+01 X2 (s3)= -.6676E+01 X2(3)= .9279E+01
X2 (c5)= .1806E+01 X2(s5)= .2372E+01 X2(5)= .2981E+01

The HARMOSC procedure provided writing to the output file of the entire /1 -characteristic
(because KER(5)=1 was set), because it exactly reflects the characteristic of the ferroresonant
circuit. This characteristic is shown in fig. 4.3 with a solid line.

Here it should be taken into account that the figure shows the dependence on the
amplitude of the applied voltage, not of the effective value of the current, but of the amplitude of
its first harmonic. This is due to the fact that the standard ouTP procedure from Block 5 of the

DHM-S was used, which does not provide for the
calculation of the actual values of variables. If such

1201 £ 4 additional calculations and printouts are necessary,
100 the user must develop the OUTP procedure
80 independently.
50 In fig. 4.3 also shows the dependence on the
ol T amplitude of the applied voltage of the value
proportional to the value of the free term of the
20 . vy Characteristic equation of the form (1.138). This
o 1o ,55 curve (it is shown dotted) illustrates that all stable
20 modes (nonlinear oscillations) that lie on the first

f the characteristic (variation of the parameter
Fig. 4.3. Characteristic of the part of the characteristic (variation of the paramete

ferroresonance circuit h from zero to 04616) are aperiOdica”y Stable,
because the free term of the characteristic equation
has a plus sign. Steady processes belonging to the second part of the characteristic (the
parameter decreases from 0.4616 to 0.196) are aperiodically unstable, because when moving
to this part, the free term of the characteristic equation changes its sign from plus to minus and
keeps this sign throughout this part. The steady processes belonging to the third part of the
characteristic are aperiodically stable, because when moving to this part, the free term again
changes its sign from minus to plus.

Calculation of the value of the free term of the characteristic equation can be provided in

the OUTP procedure, for this the user needs to modify this procedure.
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In fig. 4.3 is shown the dependence of the parameter /1 on the amplitude of the first
harmonic of the current, it has two special points 2 ~ 0.4616 and h=0.196. Their

passage in the process of calculating the /1 —characteristic was carried out by the HARMOSC
procedure using the inversion algorithm described in section 1.5.7. This can be tracked by
analyzing the printout of the output file: there you can see when the independent variable when

moving along the characteristic is a parameter /1 (here it is the 14th component of the vector
of variables), and when the independent variable is the sine amplitude of the first harmonic of
the current (here it is the 2th component of the vector variables).

Three periodic solutions of the system of equations (4.17) at & =0.32 using the

HARMOSC procedure were refined by Newton's iterative method (this value of /& corresponds
U,, = 32.0 V). In the refined first periodic solution, the content of higher harmonics in the
current curve is insignificant: the third harmonic is 1.3%; the fifth harmonic is 0.8% (in this stable
mode, the choke saturation is negligible). In the refined second periodic solution (aperiodically
unstable), the content of higher harmonics is as follows: third — 23.8% and fifth — 5.8%. In the
refined third periodic solution, the content of higher harmonics is as follows: the third = 10.5%
and the fifth — 5.6%.

41.4. Example B.4

This example considers the calculation of
a periodic process in an electrical circuit
containing a controlled valve (see Fig. 4.4). The
problem uses the instantaneous model described
in section 3.2.1.1 on the period of the controlled
valve, the volt-ampere characteristic of which
belongs to the second group - is unique with the
condition.

The considered scheme of fig. 4.4 is non-
linear, since its third branch contains two non-
linear elements: a controlled valve and a
saturation choke.

Fig.4.4 The circuit with choke and This scheme is described by the following
thyristor system of algebraic-differential equations:

i, =i, —1; =0;

d¢ . d¢ .

—dtg +rgzg+—dt2+rzz2 =e; (4.21)
dé, . dp |

d—t2+7"212—d—;+7"313—l/l63 =O,
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here i, Iy, I3 = circuit branch currents; u,,- valve voltage (is a non-linear function of the

current i,); L, L, -inductances of the first two branches; @, ¢,, @; - flux coupling of
the inductive elements of the branches, at the same time

¢g :Lg ig; ¢, =L,1, ; (4.22)
¢3 :¢3 [45]
- magnetization curve of the magnetic choke of the third branch;
e=FE sinowt (4.24)
- electromotive force in the first branch.

Equation (4.21) is reduced to the form (1.66) if we denote:

xl lg yl ¢g O
X=|x|=Ll; Y=|y,=I9|: €é=|el|;
X i y @ 0
W M (4.25)
Z, I, =1, =1 X, — X, — X,
Z=|z,|= T i, +1y 0 = Yo X+ 1 X,
Z3 rziz_r3i3_”e3[i3] rzxz_r3x3_u63[x3]
At the same time, the matrix of the form (1.69) is as follows:
0O 0 O
B=(1 1 0 (4.26)
0 1 -1

The matrices of differential parameters necessary for building an instantaneous
process model (on a period) have the form

dy/d% = diag(L,, L,, L3[i;]); (4.27)
o
4
I =71, N 0 : (4.28)
0 r, —-r-r,
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here L) =dg, /di, =LI[i,]— the differential inductance of the choke of the third branch,
it is a nonlinear function of the current i,; », =du,,;/di; =r,[i;] - the differential active

6

resistance of the valve, it is a nonlinear function of the current Iy
The text of the main program Program Ven of the block of user software components:

Program Ven

I The program of calculation of periodic process in the scheme with a valve (Fig. 4.4)
!

implicit none
real,dimension(53)::X
real,dimension(51)::E
integer,dimension(10)::KER
real,dimension(3,3)::B
real,dimension(20)::PS3
real::ALG,AL2,RG,R2,R3,5T31,DS3,Rmax,Rmin,AZ3,DAZ3
real::Em,0OM,EPS1,EPS2,H1,HM
integer::i,NT3,K,NG,NK
common/MPM/B,ALG,AL2,RG,R2,R3, NT3,5T31,DS3,PS3,Rmax,Rmin,AZ3,DAZ3
I---- common/MPM/ passes data to the Model procedure
open(1,File='DaniV.dat',status='old')
read(1,1)Em,OM,EPS1,EPS2,H1,HM
read(1,1)B
l---  Em,OM - the amplitude of the applied voltage and its frequency
I--- B - the matrix of coefficients of the system of differential equations
read(1,1)ALG,AL2,RG,R2,R3
I--- ALG,AL2,RG, R2, R3 - inductances and active resistors of the scheme
Read(1,2)NT3
read(1,1)ST31,DS3
read(1,1) (PS3(i),i=1,NT3) !-- magnetiz. curve of the choke
read(1,1)Rmax,Rmin,AZ3,DAZ3 !-- valve parameters
read(1,2)KER
read(1,2)K
1 format(4E10.4)
2 format(1013)
close(1)
open(1,FILE='RezV.DAT')
write(1,10)
10 format(/5X, 'Input data of the task:'/)
write(1,4)Em,OM,EPS1,EPS2,H1,HM
write(1,4)B
write(1,4)ALG,AL2,RG,R2,R3
write(1,3)NT3
write(1,4)ST31,DS3
write(1,4)(PS3(i),i=1,NT3)
write(1,4)Rmax,Rmin,AZ3,DAZ3
write(1,3)KER
write(1,3)K
3 format(2X,1015)
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4 format(2X,4E12.4)
write(1,20)
20 format(/5X,'The results :'/)
call SizesV(KER(1),K,KER(8),NG,NK)
write(1,3)NG,NK
I--- a composite vector of amplitudes of forcing forces
I--- (a sinusoid with amplitude Em) and the initial value of the vector X are formed
E=0.; E(NG+3)=Em
X=0.; X(NK+1)=OM
call HARMOSC(K,X,E,NK,HM,H1,EPS1,EPS2,KER)
close(1)
stop
end Program Ven

The main program of this package performs:
- description of variables, including:
a) description and declaration of the size of arrays X(53), E(51). Here X is a column
matrix formed from the composite vector of current amplitudes of three branches, circular

frequency and parameter /; Eis the composite vector of forcing force amplitudes. The set sizes
of these two arrays allow you to set the maximum order of the considered harmonics no higher
than 6 (the problem takes into account constant components and harmonics of all even and odd
orders);

b) description of the KER(10) array - control variables of the integer type;

c) description of the array B(3,3) - for the matrix (4.26) of the coefficients of the
algebraic-differential system of equations (4.21), reduced to the form (1.66);

d) description of the PSN(20) array - for the table, which specifies the nonlinear part of
the choke magnetization curve (obviously, the number of nodes in the table should not be more
than 20);

e) description of scalar variables of integer and real types;

— a description of the shared memory area called MPM, with its help, data is transferred

to the Model procedure),

— entering input data from the DaniV.dat file;

— output of this data to the RezV.dat source file;

— appeal to the SizesV procedure (included in Block 5 of the DHM-S);

— assigning a value to the composite vector of amplitudes E;

— appeal to the HARMOSC procedure (included in Block 3 of the DHM-S).

The text of the Model procedure of the instantaneous process model (on the period) in the
scheme of fig. 4.4:

Subroutine Model(AL,M,K,MK,XC,YC,ZC,YXC,ZXC,BM)

I-- The subroutine implements the instantaneous model of process in the circuit with valve
Implicit none
integer,intent(in)::M,K,MK
real,dimension(MK)::XC,YC,ZC
real,dimension(MK,K)::YXC,ZXC
real,dimension(K)::X,Y,Z
real,dimension(K,K)::YX,ZX,BM
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real,dimension(M)::XV,UV,RV,UV1,RV1
real,dimension(3,3)::B
real,dimension(20)::PS3
real::ALG,AL2,RG,R2,R3,5T31,DS3,YX3,Rmax,Rmin,AZ3,DAZ3,AL
integer::NT3,i
common/MPM/B,ALG,AL2,RG,R2,R3,NT3,5T31,DS3,PS3,Rmax,Rmin,AZ3,DAZ3
I-- through Common/MPM/ the data from the main program is transferred
BM=B; AL=0.
doi=1,M
call DRAWOUTV(K,XC,MK,X,i)
Y(1)=ALG*X(1); Y(2)=AL2*X(2)
call INTLIN(X(3),Y(3),YX3,5T31,DS3,PS3,NT3)
Z(1)=X(1)-X(2)-X(3)
Z(2)=RG*X(1)+R2*X(2)
Z(3)=R2*X(2)-R3*X(3)
ZX(1,1)=1.; ZX(1,2)=-1.; ZX(1,3)=-1.
ZX(2,1)=RG; ZX(2,2)=R2; ZX(2,3)=0.
ZX(3,1)=0.; ZX(3,2)=R2; ZX(3,3)=-R3
YX(1,1)=ALG; YX(1,2)=0.; YX(1,3)=0.
YX(2,1)=0.; YX(2,2)=AL2; YX(2,3)=0.
YX(3,1)=0.; YX(3,2)=0.; YX(3,3)=YX3
call DRAWUPV(K,Y,YC,MK,i)
call DRAWUPV(K,Z,ZC,MK, i)
call DRAWUPM(K,YX,YXC,MK,i)
call DRAWUPM(K,ZX,ZXC,MK,i)
end do
call DRAWOUTXV(K,XC,MK,M,XV,3)
call Venper(XV,M,AZ3,DAZ3,Rmax,Rmin,UV,RV)
UV1=-UV; RV1=-RV
call ADDV(K,UV1,M,ZC,MK,3)
call ADDM(K,RV1,M,ZXC,MK,3)
return
end subroutine Model

The Model procedure based on the value of the vector X of instantaneous values of the
independent variables - currents of the circuit branches - calculates in a cycle at all nodes of the
period the values of vectors y,Z and matrices d y/dx (YX)and dZ/dXx (ZX)according
to formulas (4.25), (4.27) and (4.28). However, in this case, the value “—u_," is not added to

i ”

the element Z(3) and the value “—7; " is not added to the element ZX(3,3), as required by

formula (4.25), because these data belong to the controlled gate - nonlinearities of the second
group. These additional data are determined already after the end of the cycle by calling the
Venper procedure from Block 5 of the DHM-S, which implements the instant-on-period model of
the controlled valve. To do this, the DRAWOUTXV procedure is first called for execution, which
extracts a simple nodal vector XV (the value of the currents of the third branch in the nodes of
the period) from the complex nodal vector of currents XC. The Venper procedure is then run,
which calculates the values of the simple node vectors UV (valve voltage at period nodes) and
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RV (valve resistance at period nodes). And, at the end, it enters this data using the ADDV and
ADDM procedures (see sections 3.2.2.5 and 3.2.2.6) into the ZC€ and ZXC arrays.

Input data (DaniV.dat file):

.2000E 01+.3142E 03+.1000E-01+.3000E-02
.1000E 01+.1000E 01

.0000E 00+.1000E 01+.0000E 00+.0000E 0O
.1000E 01+.1000E 01+.0000E 00+.0000E 0O
.1000E 01

.3000E-03+.9000E-03+.1000E 00+.3000E 0O
.4000E 00

11

.1000E 01+.2000E 0O
.1500E-02+.1730E-02+.1890E-02+.2025E-02
.2130E-02+.2220E-02+.2295E-02+.2355E-02
.2400E-02+.2430E-02+.2445E-02

+.1000E 04+.1000E-03+.5000E 00+.3000E 00
000000001000000000000008000000

003

++++O0++ 1+ ++ +

In this file:
The first line is data for assignment to variables FE

m?2

o, €, (accuracy of /i —
characteristic calculation) and &, (accuracy for iterations when refining the connection).

The second line is for assigning values to the variables A/ (initial value of the step), h,
- (value of the parameter /1 at which the solution should be refined), h..,. (final value of the

parameter /).
The third, fourth and fifth lines are the matrix B according to the formula (4.26), read
column by column.

The sixth and seventh lines are for variables Lg,Lz,rg NN e

The next five lines are the magnetization curve of the choke: the number of points, the
coordinate of the start of the non-linear part, the step of the table and the table.
The thirteenth line is for variables »_. ,#» ., (ignition angle), A« (ignition pulse

max > min >

width, its value should not be less than the angular distance between neighboring nodes in the
period).

The last two lines are numbers of the integer type: for the KER array and for the variable
k - the order of the system of equations (4.21).

Calculation results (RezV.dat file):

Input data of the task:

.2000E+01 .3142E+03 .1000E-01 .3000E-02
.1000E+01 .1000E+01

.0000E+00 .1000E+01 .0000E+00 .0000E+00
.1000E+01 .1000E+01 .0000E+00 .0000E+00
-.1000E+01

.3000E-03 .9000E-03 .1000E+00 .3000E+00
.4000E+00

11

.1000E+01 .2000E+00
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.1500E-02 .1730E-02 .1890E-02 .2025E-02
.2130E-02 .2220E-02 .2295E-02 .2355E-02
.2400E-02 .2430E-02 .2445E-02
.1000E+04 .1000E-03 .5000E+00 .3000E+00
0 0 1 0 0 0 0 8 0 0
3
The results
17 51

Number of the highest harmonic

.5783E+00
X1(sl)= .3380E+01 X1(1)= .4558E+01
X1 (s2)= -.4176E+00 X1(2)= .4384E+00
X1 (s3)= -.1036E-01 X1(3)= .9891E-01
X1 (s4)= .4142E-01 X1(4)= .5027E-01
X1 (s5)= -.2090E-01 X1(5)= .3155E-01
X1 (s6)= .1083E-01 X1(6)= .1554E-01
X1(s7)= -.9364E-02 X1(7)= .1048E-01
X1 (s8)= .9578E-02 X1(8)= .9581E-02
The value of the variable in nodes of period, M =102
2151E+01 -.1968E+01 -.1778E+01 -.1579E+01
9237E+00 -.6828E+00 -.4305E+00 -.1675E+00
.6713E+00 .9622E+00 .1257E+01 .1554E+01
.2460E+01 .2766E+01 .3072E+01 .3377E+01
.4245E+01 .4506E+01 .4745E+01 .4960E+01
.5435E+01 .5535E+01 .5605E+01 .5647E+01
.5608E+01 .5542E+01 .5451E+01 .5336E+01
.4878E+01 .4697E+01 .4507E+01 .4310E+01
.3685E+01 .3462E+01 .3228E+01 .2981E+01
.2160E+01 .1864E+01 .1562E+01 .1260E+01
.3886E+00 .1205E+00 -.1346E+00 -.3773E+00
1048E+01 -.1259E+01 -.1465E+01 -.1666E+01
2235E+01 -.2409E+01 -.2573E+01 -.2726E+01
3120E+01 -.3229E+01 -.3326E+01 -.3411E+01
3588E+01 -.3619E+01 -.3636E+01 -.3639E+01
3566E+01 -.3515E+01 -.3451E+01 -.3375E+01
3068E+01 -.2941E+01 -.2802E+01 -.2652E+01
= -.1928E+00
X2 (sl)= .2403E+01 X2(1)= .3332E+01
X2 (s2)= .1392E+00 X2 (2)= .1461E+00
X2 (s3)= .3455E-02 X2(3)= .3298E-01
X2 (s4)= -.1381E-01 X2(4)= .1676E-01
X2 (s5)= .6966E-02 X2 (5)= .1051E-01
X2 (s6)= -.3610E-02 X2(6)= .5183E-02
X2 (s7)= .3123E-02 X2(7)= .3496E-02
X2 (s8)= -.3191E-02 X2(8)= .3192E-02

Refined value 1 root at h=
(the solution was obtained after the 12-rd iteration)

Amplitudes of harmonics of

1.000

Constant component =

X1 (cl)= -.3057E+01
X1 (c2)= -.1332E+00
X1(c3)= .9837E-01
X1 (cd4)= .2848E-01
X1 (c5)= -.2363E-01
X1(c6)= .1114E-01
X1(c7)= .4702E-02
X1 (c8)= -.2168E-03

.4108E+01
.2721E+01
.9606E+00

.3850E+00
.2156E+01
.3967E+01
.5306E+01
.5648E+01
.5047E+01
.3900E+01
.2446E+01
.6692E+00

.2493E+01-.2326E+01-.
.1371E+01-.1153E+01-.
.1048E+00
.1854E+01
.3676E+01
.5147E+01
.5661E+01
.5201E+01

the 1l-st variable:

.6093E+00-.
.1863E+01-.
.2868E+01-.
.3484E+01-.
.3628E+01-.
.3286E+01-.

8324E+00-.
2053E+01-.
3000E+01-.
3543E+01-.
3603E+01-.
3183E+01-.

Amplitudes of harmonics of the 2-st variable:

Constant component

X2 (cl)=
X2 (c2)=
X2 (c3)=
X2 (cd)=
X2 (c5)=
X2 (c6)=
X2 (c7)=
X2 (c8)=

2308E+01

.4440E-01

.3280E-01
.9498E-02

.7872E-02

.3719E-02
.1573E-02

.6675E-04
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The value of the variable in nodes of period, M =102

-.2497E+01-.2329E+01-.2152E+01 -.1966E+01 -.1773E+01 -.1574E+01
-.1371E4+01-.1163E+01-.9536E+00 -.7431E+00 -.5328E+00 -.3234E+00

-.1158E+00 .8959E-01 .2921E+00 .4911E+00 .6859E+00 .8755E+00
.1059E+01 .1235E+01 .1404E+01 .1563E+01 .1713E+01 .1852E+01
.1983E+01 .2104E+01 .2216E+01 .2320E+01 .2417E+01 .2507E+01
.2590E+01 .2667E+01 .2736E+01 .2798E+01 .2853E+01 .2898E+01
.2935E+01 .2963E+01 .2981E+01 .2990E+01 .2989E+01 .2977E+01
.2954E+01 .2919E+01 .2873E+01 .2812E+01 .2739E+01 .2651E+01
.2550E+01 .2436E+01 .2310E+01 .2173E+01 .2028E+01 .1875E+01
.1715E+01 .1551E+01 .1381E+01 .1206E+01 .1027E+01 .8416E+00
.6505E+00 .4532E+00 .2498E+00 .4067E-01 -.1731E+00 -.3901E+00

-.6087E+00-.8273E+00-.1044E+01 -.1257E+01 -.1466E+01 -.1668E+01

-.1864E+01-.2052E+01-.2233E+01 -.2405E+01 -.2568E+01 -.2722E+01

-.2866E+01-.2999E+01-.3120E+01 -.3230E+01 -.3327E+01 -.3411E+01

-.3482E+01-.3540E+01-.3585E+01 -.3616E+01 -.3634E+01 -.3638E+01

-.3628E+01-.3604E+01-.3567E+01 -.3516E+01 -.3451E+01 -.3373E+01

-.3283E+01-.3180E+01-.3065E+01 -.2939E+01 -.2802E+01 -.2655E+01
Amplitudes of harmonics of the 3-st variable:

Constant component = .7711E+4+00

X3 (cl)= -.7486E+00 X3(sl)= .9771E+00 X3(1)= .1231E+01
X3 (c2)= -.1776E+00 X3 (s2)= -.5568E+00 X3(2)= .5845E+00
X3(c3)= .1312E+00 X3 (s3)= -.1382E-01 X3(3)= .1319E+00
X3 (c4)= .3798E-01 X3 (s4)= .5523E-01 X3(4)= .6703E-01
X3 (c5)= -.3150E-01 X3 (s5)= -.2786E-01 X3(5)= .4206E-01
X3 (c6)= .1486E-01 X3 (s6)= .1444E-01 X3(6)= .2073E-01
X3(c7)= .6274E-02 X3 (s7)= -.1249E-01 X3(7)= .1397E-01
X3 (c8)= -.2835E-03 X3 (s8)= .1277E-01 X3(8)= .1277E-01

The value of the variable in nodes of period, M =102

.1559E+00
.6783E+00
.1524E+01
.2453E+01
.2749E+01
.2359E+01
.1659E+01
.1107E+01
.4179E+00
.1274E-01
.1672E-02
.3696E-02
.2104E-03
.1307E-02
.1474E-02

.3340E-02 .2912E-02 .1035E-02-.1773E-02 -.4301E-02 -.4705E-02
-.7083E-03 .1009E-01 .2987E-01 .6029E-01 .1022E+00
.2206E+00 .2954E+00 .3792E+00 .4711E+00 .5708E+00
.7945E+00 .9202E+00 .1056E+01 .1203E+01 .1360E+01
.1693E+01 .1863E+01 .2029E+01 .2186E+01 .2328E+01
.2557E+01 .2639E+01 .2699E+01 .2736E+01 .2752E+01
.2726E+01 .2685E+01 .2626E+01 .2552E+01 .2462E+01
.2247E+01 .2127E+01 .2005E+01 .1884E+01 .1768E+01
.1558E+01 .1464E+01 .1375E+01 .1289E+01 .1200E+01
.1005E+01 .8959E+00 .7790E+00 .6574E+00 .5354E+00
.3100E+00 .2160E+00 .1388E+00 .7980E-01 .3846E-01
-.5431E-03-.5090E-02 -.4538E-02-.1953E-02 .5018E-03
.1313E-02-.1600E-03 -.2006E-02-.3483E-02 -.4090E-02
-.2524E-02-.1040E-02 .2268E-03 .8600E-03 .6805E-03
-.1479E-02-.2676E-02 -.3385E-02-.3357E-02 -.2585E-02
.6975E-04 .1102E-02 .1452E-02 .100l1E-02 -.1008E-03
-.2620E-02-.3080E-02 -.2595E-02-.1219E-02 .6630E-03

.2416E-02

Comment on the RezV.dat file with the rezults:
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Valve current, A

Angle, radians

1.0 2.0

3.0

4.0

Fig. 4.5 Valve current per period

5.0

6.0

After completing the calcu-

lation of the /1 —characteristics,
the obtained value of the
composite  vector of current
amplitudes of the branches of the
circuit was refined according to
Newton's method (the specified
accuracy was obtained after the
12th iteration). For each variable
(circuit branch currents), the
constant components and

amplitudes of harmonics, cosine and sine components of these amplitudes, as well as the values
of these variables in period nodes are printed.
The dependence of the third variable on one period of the angular coordinate - the current
of the third branch with a controlled valve - is shown in Fig. 4.5. The value of the ignition angle
was setto «, =0.5. Due to the presence of a fairly significant inductance in the branch with

the valve, the valve is in a state of conduction from 0.5 to almost 4 radians (the applied voltage

is a sinusoid).
4.1.5.
- > T
I I
r
L+ U2
¢;
e L2
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Fig. 4.6 Scheme with
magnetic choke

Example B.5

In this example, nonlinear oscillations are
simulated in a system that contains an ambiguous
nonlinearity of the hysteresis type (nonlinearity of the
third group), which is described in section 3.2.1.2.
Such a system is the electric circuit shown in fig. 4.6.
In the third branch of the circuit there is a choke (non-
linear inductance), the Weber-ampere characteristic of
which has a hysteresis form. In addition, in the second
branch of the circuit there is a nonlinear active
resistance with a current-current characteristic that is
given analytically and is unambiguously unconditional
(nonlinearity of the first group).

This scheme is described by the following algebraic-differential system of equations:



i, —1,—i;=0;

%+rlil+%+u2=e; (4.29)
dt dt
%4‘%2 —d—¢3—r3i3 =0,
dt dt
here e=FE, sinot (4.30)

- external electromotive force;

I, I, I3 - circuit branch currents;
u, =u,li,] - the voltage on the active resistance of the second branch is a non-linear
function of the current 7, ;

&, @,, ¢, - flux coupling of the inductances of the branches, at the same time

¢ =Li; ¢=Lyi,, (4.31)
L, , L, -constantinductances of the first two branches;

¢ =Ly +¢,[5], (4.32)

L, - constant inductance of the third branch;

¢/] - ¢g [i3 ] (4.33)

- the magnetization curve of the choke in the third branch, it is hysteretic.

Equations (4.29) are reduced to the form (1.66) if we denote:

X b M h 0
X=|x|=hL; Y=|n|=|%h €=|e|
X3 ’3. | .J’3 ?; 0 (4.34)
Z, I, — i, — 1, X| — X, — X,
Z=|z|=|ni+uin]| =] nx +uy[x,]].
zy) uplpI=ni| Juy[x,]=rx;

At the same time, the matrix B of the form (1.69) is as follows:
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0
0 (4.35)

S~
I
S = o

0
1
I -1

The matrices of differential parameters necessary for building an instant model of the
process have the form

dy/ds =diag(L,, L,, Ly + L% [i;]); (4.36)
s 1 -1 -1
Z_ln oo, (4.37)
dx 5
L —n

here Liz =dg¢, /di :LiZ [i,]— the differential inductance of the choke of the third branch

is a non-linear function of the current i, ; rza =du, / di, = rza [i,] - the differential active

resistance of the second branch is a nonlinear function of the current i, .
Values are accepted for calculation

E, =15000 v @=314.161/C; L, =L, = L, =0.000  Hn:
1 =0.01 om; 75 =0.001 om

Let the nonlinear dependence u, =u,[7,] be defined analytically and have the form

u, =1, (i, +ai;) (4.38)
at
r,=75om a=0.1-10"1/4",

and the Weber-ampere characteristic of the

choke is given graphically (see Fig. 4.7), its three

507 % weh branches (upper, middle (main) and lower) are
40 given for calculation by tables.

The block of user program components

in this task consists of the main Program Hister

5 program and the Model procedure of the

"260-200-150-109 507 50 F100 180 200 280 instantaneous half-period model of the process.
-20 To process the results and write them to
-30 the output file, the standard OUTP procedure from
Block 5 of the DHM-S is used, so it is not included
in the user block here
Fig. 4.7. Weber-Ampere characteristic of choke The main program of the user software
component block is as follows.

20
10

b

oy

-B0
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PROGRAM Hister
.- a program for calculating of periodic process
I--- in a circuit with a hysteresis inductance

I--- (only odd harmonics are present in the currents)
!

Implicit none
real,dimension(32)::X
real,dimension(30)::E
integer,dimension(10)::KER
real,dimension(3,3)::B
real,dimension(3,20)::PS3
real::AL1,AL2,AL3,R1,R2,ALF,R3,XL,XP,DI
real::Em,0OM,EPS1,EPS2,DH,H1,HM
integer::i,NT3,K,NG,NK,j
Common/MPM/B,AL1,AL2,AL3,R1,R2,ALF,R3,NT3,XL,XP,DI,PS3
I---- Common/MPM/ passes data to the Model procedure
open(1,File='DaniV.dat',status="'old')
read(1,1)Em,OM,EPS1,EPS2,DH,H1,HM
read(1,1)B
read(1,1)AL1,AL2,AL3,R1,R2,ALF,R3
read(1,2)NT3
read(1,1)XL,XP,DI
read(1,5) ((PS3(i,j),i=1,3),j=1,NT3)
leeeee input of choke magnetization loop data
read(1,2)KER
read(1,2)K
O KER - array of control variables
O K - the order of the system of differential equations

1 format(4E10.4)

2 format(1013)

5 format(3E10.4)

close(1)
open(1,FILE='RezV.DAT')
write(1,10)

10 format(/5X, 'Input data of the task :'/)
write(1,4)Em,OM,EPS1,EPS2,DH,H1,HM
write(1,4)B
write(1,4)AL1,AL2,AL3,R1,R2,ALF,R3
write(1,3)NT3
write(1,4)XL,XP,DI
write(1,6)((PS3(i,j),i=1,3),j=1,NT3)
write(1,3)KER
write(1,3)K

3 format(2X,1015)

4 format(2X,4E12.4)

6 format(2X,3E12.4)
call SizesV(KER(1),K,KER(8),NG,NK)
write(1,3)NG,NK

I--- a composite vector of amplitudes of forcing force
I--- and the initial value of the vector X are formed
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E=0.; E(NG+2)=Em
X=0.; X(NK+1)=0M
write(1,13)
13 format(/2X,'Calculatlon?’)
call HARMOSC(K,X,E,NK,HM,H1,EPS1,EPS2,KER)
close(1)
stop
end Program Hister

The main program of this package performs:
— a description of the variables, including a description and declaration of the sizes of
two arrays: X(32) is a matrix-column formed from the composite vector of current amplitudes of

three branches of the circuit, circular frequency @ and parameter /1, and matrix-column E(30)
is a composite vector of amplitudes coercive force. The specified sizes of these arrays (32 and
30) allow you to set the maximum order of the harmonics taken into account no higher than 9
(harmonics of odd orders only are taken into account). If a higher value of the maximum
harmonic order is specified, the sizes of these arrays must be increased;

— description of the shared memory area /MPM/, with the help of which data is transferred
to the Model procedure: matrix B of the form (3.26); inductances of three branches AL1, AL2, AL3,
active supports R1, R3 of the first and third branches; R2 and ALF coefficients of formula (4.38);
the number of NT3 nodes of the table, which is used to set the hysteresis loop; left XL and right
XP abscissas of the nodes where the upper, middle and lower branches of the loop converge;
step between nodes DI (nodes equidistant); the PS3 array, which contains a table that specifies
the three branches of the hysteresis loop - see section 3.2.1.2;

— entering input data from the DaniV.dat file;

— output to the RezV.dat source file of input data;

— appeal to the SizesV procedure;

— formation of the forcing force vector E;

— assignment of the initial value of the array X;

— appeal to the HARMOSC procedure.

The Model procedure, which implements an instantaneous (half-period) model of a
periodic process in the scheme, looks like this:

Subroutine Model(AL,M,K,MK,XC,YC,ZC,YXC,ZXC,BM)
I-- The routine implements the instant model

I-- of a periodic process in the scheme (Fig. 4.6)
!

implicit none
real,intent(in)::AL
integer,intent(in)::M,K,MK
real,dimension(MK)::XC,YC,ZC
real,dimension(MK,K)::YXC,ZXC
real,dimension(K)::X,Y,Z
real,dimension(K,K)::YX,ZX,BM
real,dimension(M)::XV,PSH,LH
real,dimension(3,3)::B
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real,dimension(3,20)::PS3
real::AL1,AL2,AL3,R1,R2,ALF,R3,XL,XP,DI,U2
integer::NT3,i
common/MPM/B,AL1,AL2,AL3,R1,R2,ALF,R3,NT3,XL,XP,DI,PS3
I-- through Common/MPM/ data from the main program is transferred
BM=B
doi=1,M
call DRAWOUTV(K,XC,MK,X,i)
Y(1)=AL1*X(1); Y(2)=AL2*X(2); Y(3)=AL3*X(3)
Z(1)=X(1)-X(2)-X(3)
U2=R2*(X(2)+ALF*X(2)**3)
Z(2)=R1*X(1)+U2
Z(3)=U2-R3*X(3)
ZX(1,1)=1.; ZX(1,2)=-1.; ZX(1,3)=-1.
U2=R2*(1.+3.*ALF*X(2)**2)
ZX(2,1)=R1; ZX(2,2)=U2; ZX(2,3)=0.
ZX(3,1)=0.; ZX(3,2)=U2; ZX(3,3)=-R3
YX(1,1)=AL1; YX(1,2)=0.; YX(1,3)=0.
YX(2,1)=0.; YX(2,2)=AL2; YX(2,3)=0.
YX(3,1)=0.; YX(3,2)=0.; YX(3,3)=AL3
call DRAWUPV(K,Y,YC,MK,i)
call DRAWUPV(K,Z,ZC,MK,i)
call DRAWUPM(K,YX,YXC,MK,i)
call DRAWUPM(K,ZX,ZXC,MK,i)
end do
call DRAWOUTXV(K,XC,MK,M,XV,3)
call HISTPER(AL,XV,M,PSH,LH,PS3,XL,XP,DI,NT3)
call ADDV(K,PSH,M,YC,MK,3)
call ADDM(K,LH,M,YXC,MK,3)
return
end subroutine Model

The first operator of the procedure BM=B assigns to the formal parameter BM the value
of the matrix B from the MPM common area of the memory. Further in the procedure there is a
loop, in which the loop parameter is the variable i - the number of the node in the half period. In
this cycle, the following is performed:

— the call DRAWOUTV(K,XC,MK,X,i) operator calls the DRAWOUTV procedure (from Block
5 of the DHM-S) for execution, which “extracts” from the composite nodal vector the values of

the variables x, (current of the first branch), x, (current of the second branch) and x; (the
current of the third branch) in the 7 -th node of the half-cycle and forms a vector from them;

— the values of the components of the vectors 3y and Z (4.34) are calculated based
on the values of the currents and the formulas (4.34) — the Y and Z arrays and differential
parameter matrices dy/dx (4.36), dZ/dx (4.37)-the YXand zx arrays;

— the operators call DRAWUPV(K,Y,YC,MK.i) and call DRAWUPV(K,Z,ZC,MK,i) the values of
the elements of the arrays Y and Z are "inserted" into the arrays YC and zC (the values of the

composite nodal shape vectors are stored in the last (1.118)) in places corresponding to the i-th
node of the half-period;
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— operators call DRAWUPM(K,YX,YXC,MK,i) and call DRAWUPM(K,ZX,ZXC,MK,i) are
inserting the values of the elements of the YX and zx arrays into the YXC and zXC arrays (the
latter store the values of the composite matrices of nodal differential parameters of the form
(1.127) ) in the places corresponding to the 1 -th node on the half-period.

In the cycle, the values of the elements of the arrays YC, ZC, YXC and ZXC are calculated,
which correspond to all the linear connections of the diagram in fig. 4.6 and nonlinearities,which
are included in the first group of nonlinearities (nonlinear active resistance in the second branch
of the circuit).

In the final part of the procedure (after the cycle), the values of the elements of the arrays
YC, ZC, YXC and ZXC are calculated taking into account the nonlinearity included in the third
group - the hysteresis characteristic of the magnetization of the choke in the third branch of the
circuit.

In this part of the procedure:

- the operator call DRAWOUTXV(K,XC,MK,M,XV,3) "draws" from the complex nodal vector
Xc of currents the simple nodal vector XV of the current of the third branch;

- the operator call HISTPER(AL,XV,M,PSH,LH,PS3,XL XP,DI,NT3) calls the HISTPER
procedure (see section 3.2.1.2), which calculates the values of flux coupling (PSH matrix) and
differential inductances (LH matrix) of the choke based on the values of the coefficient AL of the
expansion of the hysteresis loop and the value of the nodal current vector of the third branch xv
in the nodes on the half-cycle;

— operators call DV(K,PSH,M,YC,MK,3) and call ADDM(K,LH,M,YXC,MK,3) are adding the
value of the flux coupling of the inductive choke at the nodes of half-period to the corresponding
components of the matrices YC (composite nodal vector of the variable ) and YXC (composite

matrix of nodal differential parameters of the form (1.127) ) .
Printout of DaniV.dat file with input data:

+.1500E 05 +.3142E 03 +.1000E-01 +.3000E-02
+.1000E 00 +.1000E 01 +.1000E O1

+.0000E 00 +.1000E 01 +.0000E 00 +.0000E 0O
+.1000E 01 +.1000E 01 +.0000E 00 +.0000E 0O
-.1000E 01

+.1000E-03 +.1000E-03 +.1000E-03 +.1000E-01
+.7500E 01 +.1000E-04 +.1000E-02

017

-.1750E 03 +.1750E 03 +.2500E 02

-.4600E 02 -.4600E 02 .4600E 02

-.4500E 02 -.4500E 02 .4500E 02

-.4300E 02 -.4350E 02 .4400E 02

-.4000E 02 -.4150E 02 .4300E 02

-.2700E 02 -.3450E 02 .4200E 02

+.5000E 01 -.1800E 02 .4100E 02

+.2300E 02 -.8500E 01 .4000E 02

+.3000E 02 -.4000E 01 .3800E 02

+.3500E 02 +.0000E 00 .3500E 02

+.3800E 02 +.4000E 01 .3000E 02

+.4000E 02 +.8500E 01 .2300E+02

+.4100E+02 +.1800E+02 .5000E+01

+.4200E+02 +.3450E+02 .2700E+02

+.4300E+02 +.4150E+02 .4000E+02

[S—
()]
-



+.4400E+02 +.4350E+02 +.4300E+02
+.4500E+02 +.4500E+02 +.4500E+02
+.4600E 02 +.4600E 02 +.4600E+02

001000001000000000010009000000
003

The RezV.dat file with the output data (result) after running the program is as follows:

Input data of the task

.1500E+05 .3142E+03 .1000E-01 .3000E-02
.1000E+00 .1000E+01 .1000E+01
.0000E+00 .1000E+01 .0000E+00 .0000E+00
.1000E+01 .1000E+01 .0000E+00 .0000E+00
-.1000E+01
.1000E-03 .1000E-03 .1000E-03 .1000E-01
.7500E+01 .1000E-04 .1000E-02
17
-.1750E+03 .1750E+03 .2500E+02
-.4600E+02 -.4600E+02 .4600E+02
-.4500E+02 -.4500E+02 .4500E+02
-.4300E+02 -.4350E+02 .4400E+02
-.4000E+02 -.4150E+02 .4300E+02
-.2700E+02 -.3450E+02 .4200E+02
.5000E+01 -.1800E+02 .4100E+02
.2300E+02 -.8500E+01 .4000E+02
.3000E+02 -.4000E+01 .3800E+02
.3500E+02 .0000E+00 .3500E+02
.3800E+02 .4000E+01 .3000E+02
.4000E+02 .8500E+01 .2300E+02
.4100E+02 .1800E+02 .5000E+01
.4200E+02 .3450E+02 .2700E+02
.4300E+02 .4150E+02 .4000E+02
.4400E+02 .4350E+02 .4300E+02
.4500E+02 .4500E+02 .4500E+02
.4600E+02 .4600E+02 .4600E+02
1 0 1 0 0 10 0 0
3
10 30

CalculatIon
Refined value 1 root at h= 1.000
(the solution was obtained after the 3-rd iteration)

Amplitudes of harmonics of the 1l-st variable:

X1l (cl)= -.1862E+03 X1l (sl)= .5968E+03 X1(1)= .6252E+03
X1l (c3)= -.2321E+02 X1 (s3)= .9510E+02 X1(3)= .9789E+02
X1 (c5)= -.3233E+02 X1 (s5)= .3852E+02 X1(5)= .5029E+02
X1l (c7)= -.5870E+01 X1l(s7)= .1935E+02 X1(7)= .2022E+02
X1 (c9)= -.5311E+01 X1 (s9)= .9524E+01 X1(9)= .1090E+02

The value of the variable in nodes of period, M =60

-.2529E+03-.1830E+03 -.1110E+03-.4050E+02 .2562E+02 .8501E+02
.1363E+03 .1791E+03 .2139E+03 .2422E+03 .2654E+03 .2854E+03
.3037E+03 .3211E+03 .3382E+03 .3548E+03 .3706E+03 .3850E+03
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.3976E+03
.4461E+03
.5304E+03
.5820E+03
.5772E+4+03
.5309E+03
.5007E+03

.4081E+03
.4564E+03
.5445E+03
.5841E+03
.5713E+03
.5254E+03
.4837E+03

.4166E+03
.4689E+03
.5565E+03
.5851E+03
.5639E+03
.5217E+03
.4577E+403

.4238E+03
.4832E+03
.5662E+03
.5851E+03
.5554E+03
.5191E+03
.4214E+03

Amplitudes of harmonics of the

X2 (cl)= -.2024E+01
X2 (c3)= -.1578E+01
X2 (c5)= -.1241E+01
X2 (c7)= -.9343E+00
X2 (c9)= -.5976E+00

.4305E+03
.4989E+03
.5734E+03
.5839E+03
.5465E+03
.5160E+03
.3744E+03

2-st wvariable:

.4376E+03
.5149E+03
.5786E+03
.5814E+03
.5380E+03
.5107E+03
.3176E+03

X2 (sl)=
X2 (s3)=
X2 (s5)=
X2 (s7)=
X2 (s9)=

.5971E+03
.9529E+02
.3880E+02
.1948E+02
.9601E+01

X2 (1)=
X2 (3)=
X2 (5)=
X2 (7)=
X2 (9)=

.5971E+03
.9530E+02
.3882E+02
.1950E+02
.9620E+01

The value of the variable in nodes of period, M =60

6376E+01

.3174E+03
.4173E+03
.4872E+03
.5141E+03
.5307E+03
.5142E+03
.4877E+4+03
.4175E+03
.3209E+03

.6135E+02
.3445E+03
.4294E+03
.4947E+4+03
.5175E+03
.5301E+03
.5109E+03
.4786E+03
.4056E+03
.2877E+4+03

.1264E+03
.3652E+03
.4419E+03
.5004E+03
.5211E+03
.5282E+03
.5077E+03
.4678E+03
.3938E+03
.2460E+03

.1861E+03
.3810E+03
.4546E+03
.5047E+03
.5247E+03
.5251E+03
.5044E+03
.4557E+03
.3810E+03
.1957E+4+03

.2385E+03
.3940E+03
.4668E+03
.5080E+03
.5277E+03
.5215E+03
.5003E+03
.4428E+03
.3658E+03
.1377E+4+03

Amplitudes of harmonics of the 3-st variable:

X3 (cl)= -.

X3 (e3)=
X3 (c5)=
X3 (c7)=
X3(c9)=

1842E+03
.2164E+02
.3109E+02
.4935E+01
.4713E+01

.2823E+03
.4057E+03
.4779E+03
.5110E+03
.5299E+03
.5178E+03
.4948E+03
.4300E+03
.3464E+03
.71372E+02

X3 (sl)= -.2318E+00
X3 (s3)= -.1888E+00
X3 (s5)= -.2769E+00
X3 (s7)= -.1220E+00
X3(s9)= -.7771E-01

X3 (1)=
X3 (3)=
X3 (5)=
X3(7)=
X3(9)=

.1842E+03
.2164E+02
.3109E+02
.4937E+401
.4714E+01

The value of the variable in nodes of period, M =60

-.2465E+03-.
.1811E+03-.
.1136E+03-.
.8966E+02-.
.6807E+02-.
.2760E+00

.6785E+02
.8952E+02
.1133E+03
.1799E+03
Take hysteresis into account
Amplitudes of harmonics of the 1-st variable:

1655E+03
1083E+03
8668E+02
6110E+02
.1440E+02
.7324E+02
.9269E+02
.1198E+03
.1960E+03

X1 (cl)= -.1561E+03
X1 (c3)= -.6535E+02
X1 (c5)= -.2328E+02
X1 (c7)= -.6093E+01

.1389E+03
.9983E+02
.8086E+02
.4144E+02
.4102E+02
.8073E+02
.9969E+02
.1381E+03
.2256E+03

2443E+03 -.2375E+03 -.2266E+03 -.
.1512E+03
.1038E+03
.8381E+02
.5225E+02
.2838E+02
.7739E+02
.9607E+02
.1280E+03
.2116E+03

2128E+03

.1286E+03
.9621E+02
.7753E+02
.2887E+02
.5190E+02
.8368E+02
.1036E+03
.1502E+03
.2367E+03

.1973E+03
.1203E+03
.9283E+02
.7341E+02
.1494E+02
.6083E+02
.8655E+02
.1081E+03
.1643E+03
.2439E+03

X1 (sl)=
X1 (s3)=
X1 (s5)=
X1 (s7)=

.6739E+03
.8633E+02
.2769E+02
.1434E+02

X1(1l)=
X1(3)=
X1 (5)=
X1(7)=

.6917E+03
.1083E+03
.3618E+02
.1558E+02
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X1(c9)= -.1202E+01 X1(s9)=

.8852E+01 X1(9)=

The value of the variable in nodes of period, M =60
1151E+03 -.4610E+02

-.2520E+03-.1846E+03-.
.1885E+03
.4075E+03
.5348E+03
.5828E+03
.6113E+03
.6027E+03
.5840E+03
.5353E+03
.4829E+03

.1380E+03
.3775E+03
.5211E+4+03
.5761E+03
.6098E+03
.6043E+03
.5905E+03
.5413E+03
.5023E+03

.2337E+403
.4355E+03
.5459E+03
.5896E+03
.6113E+03
.6015E+03
.5760E+03
.5308E+03
.4550E+03

.2744E+403
.4612E+03
.5548E+03
.5961E+03
.6101E+03
.6002E+03
.5670E+03
.5269E+03
.4175E+03

Amplitudes of harmonics of the 2-st variable:

.8933E+01

X2 (cl)= -.2077E+01
X2 (c3)= -.1552E+01
X2 (c5)= -.1193E+01
X2 (c7)= -.8949E+00
X2 (c9)= -.5816E+00

X2 (s1)=
X2 (s3)=
X2 (s5)=
X2 (s7)=
X2 (s9)=

.5971E+4+03
.9521E+02
.3881E+02
.1948E+02
.9626E+01

The value of the variable in nodes of period, M =60

-.6298E+01
.3173E+4+03
.4171E+4+03
.4872E+03
.5141E+03
.5308E+03
.5142E+03
.4877E+03
.4175E+4+03
.3209E+03

.6143E+02
.3444E+03
.4292E+03
.4947E+03
.5175E+03
.5302E+03
.5109E+03
.4786E+03
.4056E+03
.2877E+03

.1265E+03
.3650E+03
.4418E+03
.5004E+03
.5212E+03
.5282E+03
.5078E+03
.4678E+03
.3938E+03
.2460E+03

.1862E+03
.3808E+03
.4545E+03
.5046E+03
.5247E+03
.5252E+03
.5044E+03
.4557E+03
.3810E+03
.1957E+03

Amplitudes of harmonics of the 3-st variable:

X3 (cl)=
X3 (c3)=
X3 (c5) =
X3 (c7)=
X3 (c9) =

The wvalue

-.2457E+03-.2460E+03-.
-.1793E+03-.1559E+03-.
-.3964E+02-.2171E+02-.

.1540E+03
.6380E+02
.2209E+02
.5198E+01
.6208E+00

X3 (sl)=
X3 (s3)=
X3 (s5)=
X3 (s7)=
X3 (s9)=

.7682E+02
.8881E+01
.1112E+02
.5145E+01
.7740E+00

of the variable in nodes of period, M =60

6293E+01

2415E+03 -.2323E+03 -.2184E+03
1312E+03 -.1064E+03 -.8244E+02
.6706E+01

.3388E+02
.6193E+02
.7895E+02
.9005E+02
.1027E+03
.1238E+03
.1814E+03

.4012E+02
.6531E+02
.8107E+02
.9184E+02
.1054E+03
.1297E+03
.1952E+03

.4547E+402
.6847E+02
.8303E+02
.9373E+02
.1082E+03
.1371E+4+03
.2089E+03

.5018E+02
.7140E+02
.8487E+02
.9576E+02
.1113E+03
.1459E+03
.2218E+03

.2006E+02 .8173E+02
.3114E+03 .3455E+03
.4843E+03 .5043E+03
.5624E+03 .5693E+03
.6020E+03 .6066E+03
.6082E+03 .6061E+03
.5982E+03 .5951E+03
.5576E+03 .5488E+03
.5222E+03 .5147E+03
.3705E+03 .3148E+03

X2(1)= .5971E+03

X2 (3)= .9523E+02

X2 (5)= .3883E+02

X2(7)= .1950E+02

X2(9)= .9644E+01
.2384E+03 .2822E+03
.3938E+03 .4055E+03
.4668E+03 .4778E+03
.5080E+03 .5110E+03
.5278E+03 .5300E+03
.5216E+03 .5178E+03
.5003E+03 .4949E+03
.4428E+03 .4300E+03
.3658E+03 .3464E+03
.1376E+03 .7366E+02

X3(1)= .1721E+03

X3(3)= .6441E+02

X3(5)= .2473E+02

X3(7)= .7313E+01

X3(9)= .9922E+00

- .2005E+03

- .5999E+02
.1752E+02 .2646E+02
.5442E+02 .5832E+02
.7413E+02 .7664E+02
.8662E+02 .8833E+02
.9794E+02 .1003E+03
.1148E+03 .1188E+03
.1563E+03 .1683E+03
.2329E+03 .2411E+03
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Based on the values of the third variable (current i;) inthe m nodes of the half-period,
the dependence of this current on time (angle 77) is constructed at one period.

4, A
200

100

-100

-200

Fig. 4.8. Current of 3-th branch

This dependence is shown in fig. 4.8. The dashed line shows the current i, before taking into

account the hysteresis (calculation on the main branch of the loop), and the solid line shows the
same current taking into account the hysteresis (calculation on the full loop).

Analyzing these curves, as well as the value of the vector of current amplitudes before
and after taking into account hysteresis, it is necessary to note the appearance of an active
component of the first harmonic of the current, which is a reflection of power losses due to
remagnetization of the choke. Indeed, without taking into account the hysteresis, the amplitude
of the first harmonic of the current of the third branch with a choke is as follows (see the printout

of the RezV.DAT file) 75, =—184.2.4; 15, =—0.23 4. Given that the

electromotive force in the first branch is a sine wave (see formula (4.30) ), the current of the third
branch is almost a pure cosine wave, that is, it is inductive in nature (lags behind the
electromotive force by 90 electric degrees), because the resistance of the third branch in is
mainly inductive. After taking into account the hysteresis, the following values of the amplitude

of the first harmonic of the current were obtained /) =—-154.04; ;) =76.84 ..

We see the appearance of a significant sinusoidal component in the first harmonic of the current,
which is in phase with the electromotive force, that is, it is active and causes losses due to
remagnetization.

The reader is invited to conduct a numerical experiment on the described model: to specify
several variants of the hysteresis loop with different areas and to make sure that the calculated
power losses due to remagnetization of the choke core will be proportional to the area of the
hysteresis loop [4, 41].
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4.2. Tests and examples of self-oscillation calculations

In this section, several examples of numerical simulation of self-oscillations in nonlinear
systems with various types of nonlinear connections are given. These are examples A.1 - A4,
In each example of this group, the value 2 is assigned to the fourth element KER(4) of the
control array KER before calling the HARMOSC routine in the main program of the user program
component block.

4.21. Example A.1

As the first problem, as an example of numerical modeling of self-oscillations, we will
consider the determination of the periodic solution of a nonlinear differential equation

i+ pu(x*=Dx+x=0, (4.39)

which describes, in particular, the motion of a pendulum with nonlinear damping. This equation
is known in the literature as Van der Pol's equation. Its nonlinearity is unconditionally
unambiguous (nonlinearity of the first group) and is given analytically.

It is shown in [27] that the determination of the periodic solution of equation (4.39) can
be carried out by the asymptotic Bogolyubov-Mitropolsky method, but only for values of the
coefficient £ <<1, when the oscillations described by this equation are almost harmonic.

When the values of this coefficient are close to 1, and especially when £ >>1 the oscillations

are polyharmonic and have a relaxation character, it is recommended in [27] to use other
methods, in particular, the method of A. Dorodnitsin (asymptotic approximation by powers of

1/ 42).
This example shows that during the numerical modeling by the differential harmonic

method of nonlinear self-oscillations described by equation (4.39), no restrictions are imposed
on the value of the coefficient 1 .

We reduce equation (4.39) to form (1.65):

4 s =0 (4.40)
dt

with designations

_ Xy — X, _
X = = ; e=0. (4.41a,6)

,  Z=

2
Xy Z| | X+ p(x; —Dx,

The value of the derivative dZ/dx, which is necessary in the formation of the
instantaneous (half-period) mathematical model of the system, is as follows
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dz 0 -

(4.42)

1
di || 1+2uxx, wu(xi—1) H

The text of the main program of the block of user software components for numerical

simulation of self-oscillations described by equation (4.39) has the form:

Program Van_der_Pol
Program for determination of periodic solutions
van der Pol’s equation
dX/dt+Z=E
X=colon(x1,x2)
Z=colon(z1,z2)
E=colon(el,e2)
z1=-x2; z2=x1-mju*(1-x1**2)*x2
el=0; e2=0
(variables contain only odd harmonics)

Implicit none
real,dimension(42)::Y0
real,dimension(40)::E
integer,dimension(10)::KER
real::mju,OM,EPS1,EPS2,H1,HM
real::X1C1,X1S1,X2C1,X2S1
integer::K,NG,NK

common/MP/mju !--- area of memory shared with the Model procedure
open(1,File='DaniVan.dat',status='old')
read(1,1)mju

read(1,1)EPS1,EPS2,H1,HM
--- EPS1 - accuracy of integration
--- EPS2 — accuracy for Newton’s method
--- H1 - the value of h at which it is nessesary todetermine the root more precisely
--- HM - the maximum value of h
read(1,2)KER
read(1,2)K
read(1,1)OM
read(1,1)X1C1,X151,X2C1,X251
--- KER — an array of controlvariables
--- K —the order of the system of differentialequations
--- X1C1,X1S1,X2C1,X2S1 - initial approximations of the amplitudes
---  of first harmonics of variablts X1 and X2
1 Format(4E10.4)
2 Format(10I3)
close(1)
open(1,file='"RezVan.dat’)
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write(1,5)

5 format(2X,'Periodic solution of the van der Pol’s equation' /10X,'Entered data:')

write(1,14)mju
14 format(2X,"' mju=',E10.4)
write(1,15)EPS1,EPS2,H1,HM
15 format(2X,' EPS1=',E10.4,' EPS2=',E10.4,' H1=',E10.4,' HM=',E10.4)
write(1,16)KER
16 format(2X,’KER=",10i5)
write(1,17)K
17 format(2X,' K=',i2)
write(1,18)0M
18 format(2X,'OM=',E11.4)
write(1,19)X1C1,X151,X2C1,X2S1
19 format(2X,'X1C1=',E11.4,' X1S1=',E11.4,' X2C1='/E11.4,' X2S1=',E11.4)
3 Format(2X,8I15)
call SizesV(KER(1),K,KER(8),NG,NK)
write(1,3)NG,NK
leeeme NG - the number of elements of a simple vector of amplitudes
| R NK — the number of elements of a composite vector of amplitudes
Y0=0; YO(NK+1)=OM
YO(1)=X1C1; YO(2)=X1S1; YO(NG+1)=X2C1; YO(NG+2)=X2S1
I---- formed the initial of the YO vector
write(1,13)
13 format(/2X,'Calculatlion?’)
call HARMOSC(K,YO,E,NK,HM,H1,EPS1,EPS2,KER)
close(1)
stop
end Program Van_der_Pol

The text of the Model program, which implements the instantaneous (half-cycle) process

model:

Subroutine Model(AL,M,K,MK,XC,YC,ZC,YXC,ZXC,BM)

I-- The procedure of the instaneous model (on the half-period of the process,

I-- which is described by equation (4.39)
Implicit none
real::AL
integer,intent(in)::M,K,MK
real,dimension(MK)::XC,YC,Z2C
real,dimension(MK,K)::YXC,ZXC
real,dimension(K)::X,Z
real,dimension(K,K)::ZX,BM
real::mju
integer::i

164



Common/MP/mju !-- area of memory shared with the main program

BM(1,1)=0.; AL=0.

YC(1)=0.; YXC(1,1)=0.

do i=1,M
call DRAWOUTV(K,XC,MK,X,i)
Z(1)=-X(2)
Z(2)=X(1)-mju*(1.-X(1)**2)*X(2)
ZX(1,1)=0.; ZX(1,2)=-1.
ZX(2,1)=1.42.*mju*X(1)*X(2)
ZX(2,2)=mju*(X(1)**2-1.)
call DRAWUPV(K,Z,ZC,MK,i)
call DRAWUPM(K,ZX,ZXC,MK,i)

end do

return

end Subroutine Model

In this procedure, the formal parameters AL and BM are not used, because the nonlinearity
of equation (4.39) does not belong to the third group - it is not hysteretic - and equation (4.39) in
the notation (4.40) is in the normal Cauchy form, that is, it is reduced to the form (1.65 ). For the
same reason, the first four operators

BM(1,1)=0.; AL=0.

YC(1)=0.; Y¥YXC(1,1)=0.
perform unnecessary operations, their purpose is to block the compiler's message when
compiling the procedure that the specified formal parameters in the body of the procedure are
not used.

Since there are no nonlinearities of the second or third groups in the problem, all the
actions of the procedure (calculation of the values of the composite nodal vector Z€ and the
composite matrix of nodal parameters zxc ) are performed in the main cycle of the procedure.

Printout of the DaniVan.dat file with input data:

.3000E+01
.1000E-02 .1000E-03 .1000E+01 .1000E+01
1102000900
2
.8000E+00
.2000E+01 .000O0E_00 .0O0O0OE+00 -.2000E+01

Printout of the RezVan.dat file with the calculation results:
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Periodic solution of the van der Pol’s equation

Entered data:
mju= .3000E+01
EPS1=.1000E-02 EPS2=.1000E-03 H1=.1000E+01 HM=.1000E+01
KER= 1 1 0 2 0 0 0 9 0 0
K= 2

OM = .8000E+00
X1C1=.2000E+01 X1S1=.0000E+00 X2C1l=.0000E+00 X2S1=-.2000E+01
10 20

CalculatIon

Refined value 1 root at h= 1.000
(the solution was obtained after the 2-rd iteration)

Amplitudes of harmonics of the 1-st variable:

X1l(cl)= .2074E+01 X1(sl)= -.7973E-10 X1(1)= .2074E+01
X1 (c3)= -.3668E+00 X1 (s3)= -.3408E+00 X1(3)= .5007E+00
X1 (c5)= .1400E-01 X1 (s5)= .2272E+00 X1(5)= .2276E+00
X1(c7)= .8226E-01 X1 (s7)= -.9589E-01 X1(7)= .1263E+00
X1l (c9)= -.8103E-01 X1(s9)= .1747E-01 X1(9)= .8289E-01

The value of the variable in nodes of period, M =60

.1723E+01 .1706E+01 .1698E+01 .1694E+01 .1691E+01 .1682E+01
.1665E+01 .1638E+01 .1602E+01 .1560E+01 .1516E+01 .1476E+01
.1443E+01 .1420E+01 .1405E+01 .1396E+01 .1386E+01 .1372E+01
.1346E+01 .1307E+01 .1253E+01 .1189E+01 .1119E+01 .1050E+01
.9875E+00 .9356E+00 .8940E+00 .8581E+00 .8189E+00 .7644E+00
.6813E+00 .5578E+00 .3858E+00 .1629E+00 -.1062E+00 -.4104E+00
-.7328E+00-.1053E+01-.1351E+01 -.1609E+01 -.1813E+01 -.1957E+01
-.2042E+01-.2075E+01-.2069E+01 -.2039E+01 -.1998E+01 -.1959E+01
-.1930E+01-.1914E+01-.1910E+01 -.1913E+01 -.1917E+01 -.1917E+01
-.1907E+01-.1886E+01-.1855E+01 -.1819E+01 -.1781E+01 -.1748E+01
Amplitudes of harmonics of the 2-st variable:

X2 (cl)= -.5166E-06 X2(sl)= -.1472E+01 X2(1)= .1472E+01

X2 (c3)= -.7254E+00 X2 (s3)= .7808E+00 X2(3)= .1066E+01

X2 (c5)= .8060E+00 X2 (s5)= -.4967E-01 X2(5)= .8075E+00

X2 (c7)= -.4763E+00 X2 (s7)= -.4086E+00 X2(7)= .6275E+00

X2 (c9)= .1115E+00 X2(s9)= .5175E+00 X2(9)= .5293E+00

The value of the variable in nodes of period, M =60

-.2841E+00 -.1624E+00 -.7238E-01 -.3898E-01 -.7235E-01 -.1654E+00
-.2959E+00 -.4318E+00 -.5397E+00 -.5929E+00 -.5787E+00 -.5015E+00
-.3826E+00 -.2546E+00 -.1545E+00 -.1137E+00 -.1503E+00 -.2643E+00
-.4361E+00 -.6309E+00 -.8068E+00 -.9244E+00 -.9579E+00 -.9026E+00
-.7784E+00 -.6279E+00 -.5092E+00 -.4843E+00 -.6055E+00 -.9031E+00
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.1376E+01
.4404E+01
.7787E+00
.3063E+00
.2090E+00

-.1990E+01 -

-.4236E+01 -.

-.1535E+00

.1279E+00 -.

.3543E+00

Circular frequency of the fundamental harmonic =

.2678E+01 -.3352E+01 -.3917E+01 -.4289E+01
3801E+01 -.3149E+01 -.2364E+01 -.1542E+01
.2833E+00 .5162E+00 .5641E+00 .4733E+00
7587E-02 -.6567E-01 -.3667E-01 .6542E-01
.4638E+00 .5113E+00 .4881E+00 .4039E+00
.7095E+00

Fig. 4.9 Limit cycle

These results refer to the version of
calculations at /=3.0 and n=9..

According to the obtained values of the
variables x, and x, at the nodes on the half-

period in fig. 4.9, the limit cycle for simulated self-
oscillations (dependence of the variable x,

(speed) on the variable  x, (deviation)) is

constructed.
For the same value of /U, calculations were

performed for other values of 7, their results are
shown in table 4.2. As can be seen from this table,
the amplitude of the 15th harmonic of the variable
does not exceed 1% of the value of the amplitude of
the 1st harmonic, and it makes almost no sense to

further increase the number of harmonics taken into
account.

Table 4.2. Results of self-oscillation calculation at [ =3.0

" Xl(l) X1(3) XI(S) X1(7) X1(9) Xl(l 1) X1(13) X1(15) @

1 120 1.0

3 12.102 {0.5329 0.8212
5 12.08710.5391 | 0.2741 0.7304
7 12.074 1 0.5068 | 0.2433 | 0.1499 0.7105
9 12.07410.5007 | 0.2276 | 0.1263 | 0.0829 0.7095
11 [2.075]0.5001 | 0.2249 | 0.1197 | 0.0704 | 0.0433 0.7094
13 12.075 1 0.5000 | 0.2244 | 0.1183 | 0.0673 | 0.0407 | 0.0276 0.7093
1512.075 1 0.5000 | 0.2243 | 0.1179 ] 0.0665 | 0.0391 | 0.0241 | 0.0164 | 0.7093
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4.2.2. Example A.2

In this example, the definition of self-oscillation parameters in the third-order automatic
control system described by the equation is considered

T>X+2ET%+%+bsignx=0. (4.43)

To determine the periodic solution of this equation, the method of harmonic linearization
was used in [56], it is presented there as example 4.2.2. At the same time, fluctuations of the
variable are sought in the form

x=Asinat. (4.44)

By the method of harmonic linearization in [56] obtained

bl 2T

- 2 (4.45)

If specified by numerical values
T=1.0; b=10.0; ¢&=0.07,
then by formulas (4.45) we obtain: @ =1.0 and 4=90.95 .

Let's solve the same problem by means of numerical modeling using DGM software. For
this equation (4.43) we reduce to the form (1.65):

dx . .

—+ZzZ-¢e=0, (4.46)
dt
here
X 21 —X

X=|Xx,l; Z=|zy|= — X ; (4.47)

X Z, €, X5 +CyXx, +C, SIgn X,

2¢ 1

CL=—"3 C=—5 4.48
1 T 2 T2 ( )

The software components of the user block in this example are as follows.

1. The main program:
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Program SAR
I-- Program for determining periodic solutions
I-- the equation describing the self-oscillating mode
I-- automatic regulation systems
- dX/dt+Z2=0
I--  X=colon(x1,x2,x3)
I--  Z=colon(z1,z2,23)
.- 21=-x2; 22=-x3; 23=c1*x3+c2*x2+c3*sign(x1)
I-- (variables contain only odd harmonics)
I

Implicit none

real,dimension(42)::Y0
real,dimension(40)::E
integer,dimension(10)::KER
real::A,D,T,C1,C2,B,0M,EPS1,EPS2,H1,HM
real::X1C1,X151,X2C1,X251,X3C1,X3S1
integer::K,NG,NK

common/MP/C1,C2,B !--- area of memory shared with the Model procedure
open(1,File='"DaniVan.dat',status='old’)
read(1,*)D,T,B

read(1,*)EPS1,EPS2,H1,HM
leeeee H1 - the value of h at which it is nessesary todetermine the root more precisely
I----- HM - the maximum value of h
leeeee EPS1 — accuracy of integration
loeeee EPS2 — accuracy for Newton’s method
read(1,*)KER
read(1,*)K
loeeee KER — an array of controlvariables
loeeee K — the order of the system of differentialequations
close(1)
open(l,file='RezVan.dat')
write(1,5)
5 format(2X,'Periodic solution of the SAR equation’ /10X,'Entered data:')
write(1,14)D,T,B
14 format(2X,'Dzeta=',E10.4,' T=',E10.4,' B=',E10.4)
write(1,15)EPS1,EPS2,H1,HM
15 format(2X,' EPS1=',E10.4,' EPS2=',E10.4,' H1=',E10.4,' HM=',E10.4)
write(1,16)KER
16 format(2X,” KER=’,10i5)
write(1,17)K
17 format(2X,' K=',i2)
OM=1./T; A=2.*B*T/(3.14159*D)
write(1,18)0M,A
18 format(2X,'OM=",E11.4,' A=',E11.4)
X1C1=A; X151=0.; X2C1=0.; X2S1=-OM*A
X3C1=-OM**2*A; X351=0.
I--- X1C1,X1S1,X2C1,X251,X3C1,X3S1 —initial values
e of the amplitudes of the first harmonics of variables
write(1,19)X1C1,X1S1,X2C1,X251,X3C1,X3S1
19 format(2X,'X1C1=',E11.4,' X1S1=",E11.4,' X2C1=',E11.4,
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& 'X2S1=',E11.4,' X3C1=',E11.4,' X3S1=',E11.4)
3 Format(2X,1015)
C1=2.*D/T; C2=1./T**2
call SizesV(KER(1),K,KER(8),NG,NK)
write(1,3)NG,NK
R NG - the number of elements of a simple vector of amplitudes
R NK - the number of elements of a composite vector of amplitudes
Y0=0; YO(NK+1)=OM
YO(1)=X1C1; YO(2)=X151; YO(NG+1)=X2C1; YO(NG+2)=X2S1
YO(2*NG+1)=X3C1; YO(2*NG+2)=X351
I---- formed the initial of the YO vector
write(1,13)
13 format(/2X,'Calculatoln?’)
call HARMOSC(K,YO,E,NK,HM,H1,EPS1,EPS2,KER)
close(1)
stop
end Program SAR

In this program, the real variables D, T, B correspond to the variables &, T and b in

equations (4.43) and the variables oM, A correspond to the variables @ and A from the
formulas (4.45). Based on the values of the last two variables, the initial values of the amplitudes

of the first harmonics of the variables x,, x,, x; are calculated.

2. The procedure that implements the instantaneous (on half-period) model of the system:

Subroutine Model(AL,M,K,MK,XC,YC,ZC,YXC,ZXC,BM)
I-- The procedure of the instantaneous model of the ssystem on half-period

Implicit none
real::AL
integer,intent(in)::M,K,MK
real,dimension(MK)::XC,YC,ZC
real,dimension(MK,K)::YXC,ZXC
real,dimension(K)::X,Z
real,dimension(K,K)::ZX,BM
real::C1,C2,B
integer::i
common/MP/C1,C2,B !-- area of memory shared with the main program
BM(1,1)=0.; AL=0.
YC(1)=0.; YXC(1,1)=0.
doi=1,M
call DRAWOUTV(K,XC,MK,X,i)
Z(1)=-X(2)
Z(2)=-X(3)
Z(3)=C1*X(3)+C2*X(2)+C2*sign(B,X(1))
ZX(1,1)=0.; ZX(1,2)=-1.; ZX(1,3)=0.
ZX(2,1)=0.; ZX(2,2)=0.; ZX(2,3)=-1.
ZX(3,1)=0.; ZX(3,2)=C2; ZX(3,3)=C1
call DRAWUPV(K,Z,ZC,MK,i)
call DRAWUPM(K,ZX,ZXC,MK,i)
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end do
return
end Subroutine Model

As in the previous example A1, the formal parameters AL and BM are not used in the
Model procedure for this example, because the nonlinearity of equation (4.43) is not hysteretic
(does not belong to the third group) and equation (4.43) in the notation (4.46) is in to the normal
Cauchy form, that is, it does not reduce to the form (1.67). For the same reason, the first four
operators perform unnecessary operations, their purpose is to block the compiler's message
when compiling the procedure that the specified formal parameters in the body of the procedure
are not used.

Since there are no nonlinearities of the second or third groups in the problem, all the
actions of the procedure (calculation of the values of the composite nodal vector z€ and the
composite matrix of nodal parameters zxc ) are performed in the main cycle of the procedure.

After carrying out the calculation using this program, taking into account only the first
harmonic for a small value of § =0.07, the result A =91.65and @ = 0.9954 was obtained,

which is quite close to the one obtained in [56] by the method of harmonic linearization. The
deviation in amplitude does not exceed 0.5% and in frequency - 0.3%.

The calculation of the same option, but with # =3, gave the following result:

Periodic solution of the SAR equation
Entered data:

Dzeta= .7000E-01 T= .1000E+01 B= .1000E+02

EPS1= .1000E-02 EPS2= .1000E-03 Hl= .1000E+01 HM= .1000E+01

KER = 1 1 0 2 0 0 0 5 0 0

K= 3

OM= .1000E+01 A= .9095E+02
X1Cl= .9095E+02 X1S1l= .0000E+00 X2Cl= .0000E+00 X2S1= -.9095E+02
X3Cl= -.9095E+02 X3S1l= .0000E+00

6 18
Calculation:
Number of the highest harmonic = 5

Refined value 1 root at h= 1.000

(the solution was obtained after the 2-rd iteration)

Amplitudes of harmonics of the 1l-st variable:

X1(cl)= .9145E+02 X1(sl)= .OOOOE+00 X1(1)= .9145E+02
X1l (c3)= .1396E-01 X1(s3)= -.1783E+00 X1(3)= .1789E+00
X1 (c5)= -.4060E-02 X1 (s5)= .2120E-01 X1(5)= .2158E-01
Amplitudes of harmonics of the 2-st variable:

X2 (cl)= .8884E-05 X2(sl)= -.9117E4+02 X2(1)= .9117E+02
X2 (c3)= -.5333E+00 X2 (s3)= -.4176E-01 X2(3)= .5350E+00
X2 (c5)= .1057E+00 X2(s5)= .2023E-01 X2(5)= .1076E+00
Amplitudes of harmonics of the 3-st variable:

X3 (cl)= -.9089E+02 X3 (sl)= -.2267E-05 X3(1)= .9089E+02
X3(c3)= -.1250E+00 X3 (s3)= .1595E+01 X3(3)= .1600E+01
X3(c5)= .1007E+00 X3 (s5)= -.5268E+00 X3(5)= .5363E+00

Circular frequency of the fundamental harmonic = .9969E+00
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As we can see, at & = 0.07 the content of higher harmonics in the solution is negligible.

For large values & , the calculation results obtained by the harmonic linearization method
and the proposed method differ more. If we set & = 7.0 (with the same 7'=1.0; 5 =10.0)
then by formulas (4.45) we obtain @ =1.0 and 4=10.9095.

Next is a printout of the results of numerical simulation at & =7.0 and taking into account
the first, third and fifth harmonics (printout of the RezVan.dat file):

Periodic solution of the SAR equation
Entered data:

Dzeta= .7000E+01 T= .1000E+01] B= .1000E+02

EPS1= .1000E-02 EPS2= .1000E-03 Hl1= .1000E+01 HM= .1000E+01
KER = 1 1 0 2 0 0 0 5 0 0

K= 3
OM= .1000E+01 A= .9095E+00
X1C1=.9095E+00 X1S1=.0000E+00 X2C1=.0000E+00 X2S1= -.9095E+00
X3Cl= -.9095E+00 X3S1= .00OOE+00

6 18

Calculation:
Number of the highest harmonic = 5
Refined value 1 root at h= 1.000
(the solution was obtained after the 2-rd iteration)

Amplitudes of harmonics of the 1l-st variable:

X1l(cl)= .1660E+01 Xl(sl)= .000OE+00 X1(1)= .1660E+01
X1 (c3)= -.5919E-01 X1 (s3)= -.1553E-01 X1(3)= .6119E-01
X1l (c5)= .1166E-01 X1l (s5)= .5756E-02 X1(5)= .1301E-01

Amplitudes of harmonics of the 2-st variable:

X2 (cl)= .4941E-07 X2(sl)= -.1228E+01 X2(l1)= .1228E+01
X2 (c3)= -.3448E-01 X2(s3)= .1314E+00 X2(3)= .1359E+00
X2 (c5)= .2130E-01 X2(s5)= -.4316E-01 X2(5)= .4813E-01

Amplitudes of harmonics of the 3-st variable:

X3 (cl)= -.9089E+00 X3 (sl)= -.3584E-07 X3(1)= .9089E+00
X3 (c3)= .2917E+00 X3 (s3)= .7656E-01 X3(3)= .3016E+00
X3 (c5)= -.1597E+00 X3 (s5)= -.7880E-01 X3(5)= .1781E+00
Circular frequency of the fundamental harmonic = .7400E+00

As you can see, the amplitude of the first harmonic of the variable x, (taking into account

the first, third and fifth harmonics) is 1.66 and the circular frequency is 0.74. Here, the calculation
results differ from those obtained by the harmonic linearization method (0.905 and 1.0),
respectively, by 82% and 26%.

The results depend significantly on the number of higher harmonics taken into account,
which is illustrated in Table 4.3.

172



Table 4.3. The results of solving equation (4.43)

n X1(1) X1(3) X1(5) X1(7) X1(9) X1(11) @

1 [2207 0.6414

3 2207 |0.082 0.6414

5 166 |0.061 |0013 0.74

7 | 1432 0053 |0011 |0.004 0.7968

9 131 |0.048 |001 |00036 |0.0016 0.8334
11 | 1233 |0045 |0.0095 |0.0033 |0.0015 |0.0008 |0.8589

This problem, unlike others given in this section, confirms the admissibility of applying the
harmonic linearization method to its solution: when increasing the number of considered
harmonics, the value of the amplitude of the first harmonic approaches 0.9095 and the value of
the circular frequency - to 1.0, that is, the values obtained by the method of harmonic
linearization. Thus, when harmonics up to and including the 23rd are taken into account, these
variables take, respectively, the values of 1.059 (16% deviation) and 0.9266 (7% deviation).

The obtained result can be explained by the specificity of nonlinearity - it is a discontinuous
function y =bsignx thatis sharply nonlinear (discontinuity of the first kind) only in the
vicinity of the zero value of the variable x . The discontinuity of the function is the reason for
the poor convergence of the Fourier series approximating the periodic dependence of the
variables of this problem (many harmonics must be taken into account).

4.2.3. Example A.3

Consider example 4.1.2 from [56], this is the calculation of the self-oscillating mode
described by the equation

i+wix+a(x’—b*)x=0. (4.49)

When considering this example in [56], the analytical method of harmonic balance is used and
the solution is sought in the form

X=asinwt. (4.50)

When applying this method, the amplitude a and circular frequency @ values were obtained
in [56] by solving algebraic equations
2

aaa)(a——bz) =0;
4 (4.51)
—aw’ +aw; =0,

from which it is obtained
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®w=w, a=2b. (4.52)
If given values

a=0.5; b=15; w,=0.5, (4.53)

then we will get it
U w=0.J5". (4.54)

We will calculate these self-oscillations (considering them as polyharmonic) by means of
numerical simulation using DHM-S. For this equation (4.49) we write in the form (1.65):

dx -
Xz _e=0, (4.55)
dt
here
-~ I I — X, - |1©é 0
X = , Z= = , Y ; e = = ||. (4.56)

The expression for the derivative dZ/dx , which is necessary for constructing an instantaneous
(half-cycle) mathematical model of the process, has the form

0 -1

200 x,x, + ) a(x; —b)

az

9z _ . (4.57)
dx

The block of user program components for this case consists of the main Program Avto
program and the Model procedure of the instantaneous process model.

To process the results and write them to the output file, the standard OUTP procedure
from Block 5 of the DHM-S is used, so it is not included in the user block here.

The main Program Avto program and the Model procedure of this block look like this:

Program Avto
.- dX/dt+Z=E
.- X=colon(x1,x2)
I--  Z=colon(z1,22)
I--  E=colon(el,e2)
- z1=-x2; z2=A*(x1**2-B**2)*x2+C*x1
.- el1=0; e2=0
I-- (variables contain only odd harmonics)
I

Implicit none
real,dimension(42)::Y0
real,dimension(40)::E
integer,dimension(10)::KER
real::A,B,C,OM,EPS1,EPS2,H1,HM
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real::X1C1,X1S1,X2C1,X2S1
integer::K,NG,NK
common/MP/A,B,C !--- area of memory shared with the Model procedure
open(1,File="DaniVan.dat',status="'old')
read(1,*)A,B,C
read(1,*)EPS1,EPS2,H1,HM
loeeee H1 - the value of h at which it is nessesary todetermine the root more precisely
I----- HM - the maximum value of h
leeeme EPS1 — accuracy of integration
leeeme EPS2 — accuracy for Newton’s method
read(1,*)KER
read(1,*)K
read(1,*)OM
read(1,*)X1C1,X151,X2C1,X251
I----- KER - an array of controlvariables
| R K — the order of the system of differentialequations
loeeee X1C1,X1S1,X2C1,X2S1 — initial approximations of the amplitudes
I----- of first harmonics of variablts X1 and X2
1 format(4E10.4)
2 format(1013)
close(1)
open(1,file='"RezVan.dat’)
write(1,5)
5 format(2X,'Solution of the equations of the self-oscillating mode'/10X,'Entered data:')
write(1,14)A,B,C
14 format(2X,' A=',E10.4,' B=',E10.4,' C=',E10.4)
write(1,15)EPS1,EPS2,H1,HM
15 format(2X,' EPS1=',E10.4, ' EPS2=',E10.4,' H1=',E10.4, HM=',E10.4)
write(1,16)KER
16 format(3X,” KER =’,10i5)
Write(1,17)K
17 format(2X,' K=',i2)
write(1,18)0M
18 format(2X,'OM=",E11.4)
write(1,19)X1C1,X151,X2C1,X2S1
19 format(2X,'X1C1=',E11.4,' X1S1=',E11.4,' X2C1=',E11.4,' X2S1=',E11.4)
3 format(2X,10I5)
| R 3aHecnu BBeeHi AaHi o BuxigHoro dpaiiny
call SizesV(KER(1),K,KER(8),NG,NK)
write(1,3)NG,NK
| NG — nopAAoK NPOCTOro BEKTopa amnaityp,
I----- NK - nopAagoK cknageHoro BeKTopa amnaityg,
Y0=0; YO(NK+1)=OM
YO(1)=X1C1; YO(2)=X1S1; YO(NG+1)=X2C1; YO(NG+2)=X2S1
write(1,13)
13 format(/2X,'Calculatlion:’)
call HARMOSC(K,Y0,E,NK,HM,H1,EPS1,EPS2,KER)
close(1)
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stop
end Program Avto

Subroutine Model(AL,M,K,MK,XC,YC,ZC,YXC,ZXC,BM)
I-- The procedure of the instantaneous model of the ssystem on half-period
Implicit none
real::AL
integer,intent(in)::M,K,MK
real,dimension(MK)::XC,YC,ZC
real,dimension(MK,K)::YXC,ZXC
real,dimension(K)::X,Z
real,dimension(K,K)::ZX,BM
real::A,B,C
integer::i
common/MP/A,B,C !-- area of memory shared with the main program
BM(1,1)=0.; AL=0.
YC(1)=0.; YXC(1,1)=O0.
do i=1,M
call DRAWOUTV(K,XC,MK,X,i)
Z(1)=-X(2)
Z(2)=A*(X(1)**2-B**2)*X(2)+C*X(1)
ZX(1,1)=0.;  ZX(1,2)=-1.
ZX(2,1)=2.*A*X(1)*X(2)+C
ZX(2,2)=A*(X(1)**2-B**2)
call DRAWUPV(K,Z,ZC,MK,i)
call DRAWUPM(K,ZX,ZXC,MK,i)
end do
return
end Subroutine Model

As in previous examples A.1 and A.2, formal parameters AL and BM are not used in the
MODEL procedure for this example, because the nonlinearity of equation (4.49) is not hysteretic
(does not belong to the third group) and equation (4.49) in notation (4.55) is in the normal Cauchy
form (1.65). For the same reason, the first four operators

BM(1,1)=0.; AL=0.

YC(1)=0.; ¥YXC(1,1)=0.
perform unnecessary operations, their purpose is to block the compiler's message when
compiling the procedure that the specified formal parameters in the body of the procedure are
not used.

Since there are no nonlinearities of the second or third groups in the problem, all the
actions of the procedure (calculation of the values of the composite nodal vector z€ and the
composite matrix of nodal parameters zXC ) are performed in the main cycle of the procedure.

Printout of the RezVan.dat file with the calculation results:
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Solution of the equations of the self-oscillating mode

Entered data:
A= .5000E+00 B= .1500E+01 C= .2500E+00
EPS1l= .1000E-02 EPS2= .1000E-03 Hl= .1000E+01 HM= .1000E+01
KER = 1 1 0 2 0 0 0 9 0 0
K =2
OM= .4000E+00
X1C1l=.3300E+01 X1S1l= .1000E-01 X2Cl= .1000E-01 X2S1l= -.2000E+01
10 20

Calculation:
Amplitudes of harmonics of the 1-st variable:

X1l (cl)= .3083E+01 X1(sl)= .0000E+00 X1(1)= .3083E+01
X1 (c3)= -.4235E+00 X1 (s3)= -.4977E+00 X1(3)= .6535E+00
X1 (c5)= -.4779E-01 X1 (s5)= .2488E+00 X1(5)= .2533E+00
X1 (c7)= .1034E+00 X1(s7)= -.5143E-01 X1(7)= .1155E+00
X1 (c9)= -.5647E-01 X1 (s9)= -.2426E-01 X1(9)= .6146E-01
Amplitudes of harmonics of the 2-st variable:
X2 (cl)= -.5489E-06 X2 (sl)= -.1223E+01 X2(1)= .1223E+01
X2 (c3)= -.5922E+00 X2 (s3)= .5038E+00 X2(3)= .7775E+00
X2 (c5)= .4934E+00 X2 (s5)= .9476E-01 X2 (5)= .5024E+00
X2 (c7)= -.1428E+00 X2 (s7)= -.2872E+00 X2(7)= .3207E+00
X2 (c9)= -.8659E-01 X2 (s9)= .2016E+00 X2(9)= .2194E+00
Circular frequency of the fundamental harmonic = .3966E+00

Table 4.4 illustrates the dependence of the calculated values of the amplitudes of the
harmonics of variable x, and circular frequency @ oscillations on the number of harmonics

taken into account.

Table 4.4. Calculation results for equation (4.49)

" Xl(l) X1(3) X1(5) X1(7) X1(9) @
1 3.0 0.5
3 3.120 0.7281 0.4206
5 3.085 0.6782 0.3042 0.3970
7 3.082 0.6549 0.2601 0.1328 0.3966
9 3.083 0.6535 0.2533 0.1155 0.0615 0.3966

As you can see, it is enough to take into account harmonics up to and including the
seventh in the calculation. At the same time, the obtained amplitude and frequency values differ
from values (4.54) by 2.6% and 20.7%, respectively. The time dependence of the variable
contains sufficiently pronounced higher harmonics: the third (24%) and the fifth (8.3%).
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4.2.4. Example A 4

In this section, we present the results of simulation of oscillations of a pendulum with a
pushing force under viscous damping, which are described by the equation

X+awix = f sign(x)—2hx. (4.58)

Here, the pushing force is a kind of negative dry friction: when the speed is positive, the pushing
force is also constant and positive; when the speed is negative, then it is also constant and
negative.

In [56], taking

x =asin(oyt + @), (4.59)
solved this problem by the averaging method (here it is - example 4.3.3) and got
2
a= / _ (4.60)
7 ho,
Having asked
f=0.9;, h=0455 w,=1.0, (4.61)
by formula (4.60) we have
a=1.259. (4.62)

Now let's calculate this nonlinear oscillation by means of numerical modeling using
DGM software. For this purpose, we reduce equation (4.58) to the form (1.65)

dx .
Xz 6-0, (4.63)
dt
here
X z -X e 0
=" z=| "= , S o= Y= @464)
X, Z,| ||@ix, +2hx, — f signx, e |0

The expression for the derivative dZ/dx , which is necessary for constructing an
instantaneous (on half-period) mathematical model of the process, has the form

dz 0 -1
d |of 2h|
The block of user program components for this case consists of the main Program

Majatnyk program and the Model procedure (instant model on the half-period), which have the
form:

(4.65)
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Program Majatnyk
I--- Calculation of pendulum oscillations with a force that pushes
.- dX/dt+Z=E
.- X=colon(x1,x2)
I--  Z=colon(z1,22)
I--  E=colon(el,e2)
.- 21=-x2; 2z2=C*x1+2*h*x2-f*sign(x2)
.- el1=0; e2=0
I-- (variables contain only odd harmonics)
I

Implicit none
real,dimension(42)::Y0
real,dimension(40)::E
integer,dimension(10)::KER
real::C,H,F,OM,A,EPS1,EPS2,H1,HM
real::X1C1,X1S1,X2C1,X2S1
integer::K,NG,NK

common/MP/C,H,F !--- area of memory shared with the Model procedure
open(1,File='"DaniVan.dat',status='old’)

Read(1,1)C,H,F

Read(1,1)EPS1,EPS2,H1,HM

Read(1,2)KER

Read(1,2)K

1 Format(4E10.4)
2 Format(10I3)
Close(1)
open(l,file='"RezVan.dat')
write(1,5)
5 format(2X,'Calculation of pendulum oscillations ' /10X,'Entered data:')
write(1,14)C,H,F
14 format(2X,' C=',E10.4,' H=',E10.4,' F=',E10.4)
write(1,15)EPS1,EPS2,H1,HM
15 format(2X,' EPS1=',E10.4,' EPS2=',E10.4,' H1=',E10.4,' HM=',E10.4)
write(1,3)KER
write(1,17)K
17 format(2X,' K=',i2)
OM=sqrt(C); A=2.*F/(3.14159*H*OM) !--- formula (4.60)
write(1,18)0M,A
18 format(2X,'OM=",E11.4,' A=',E11.4)
X1C1=A; X151=0.; X2C1=0.; X2S1=-A*OM
I--- X1C1,X1S1,X2C1,X2S1 - initial values of the amplitudes of the
I--- first harmonics of variables
write(1,19)X1C1,X1S1,X2C1,X2S1
19 format(2X,'X1C1=',E11.4,' X1S1=',E11.4,' X2C1=',E11.4,' X2S1=',E11.4)
3 Format(2X,8I5)
call SizesV(KER(1),K,KER(8),NG,NK)
Write(1,3)NG,NK
loeeee NG - the order of a simple vector of amplitudes
loeeee NK - the order of the composite vector of amplitudes
Y0=0; YO(NK+1)=OM




YO(1)=X1C1; YO(2)=X151; YO(NG+1)=X2C1; YO(NG+2)=X2S1
write(1,13)
13 format(/2X,'Calculatlion:’)
call HARMOSC(K,YO0,E,NK,HM,H1,EPS1,EPS2,KER)
close(1)
stop
end Program Majatnyk

Subroutine Model(AL,M,K,MK,XC,YC,ZC,YXC,ZXC,BM)
I-- Instant model of the process (at half period)
Implicit none
real::AL
integer,intent(in)::M,K,MK
real,dimension(MK)::XC,YC,ZC
real,dimension(MK,K)::YXC,ZXC
real,dimension(K)::X,Z
real,dimension(K,K)::ZX,BM
real::C,H,F
integer::i
Common/MP/C,H,F !-- A shared area of memory with the main program
BM(1,1)=0.; AL=0.
YC(1)=0.; YXC(1,1)=0.
doi=1,M
call DRAWOUTV/(K,XC,MK,X, i)
Z(1)=-X(2)
Z(2)=C*X(1)+2.*H*X(2)-sign(F,X(2))
ZX(1,1)=0.; ZX(1,2)=-1.
ZX(2,1)=C; ZX(2,2)=2.*H
call DRAWUPV(K,Z,ZC,MK, i)
call DRAWUPM(K,ZX,ZXC,MK,i)
end do
return
end Subroutine Model

And in this example, as in several previous ones, the formal parameters AL and BM are
not used in the Model procedure, because the nonlinearity of equation (4.58) is not hysteretic
(does not belong to the third group) and equation (4.58) in the notation (4.63) is in the normal
Cauchy form (1.65). For the same reason, the first four operators

BM(1,1)=0.; AL=0.
YC(1)=0.; Y¥XC(1,1)=0.

are performing unnecessary operations, their purpose is to block the compiler's message when
compiling the procedure that the specified formal parameters in the body of the procedure are
not used.

Since there are no nonlinearities of the second or third groups in the problem, the values
of the composite nodal vector z€ and the composite matrix of nodal parameters zZXc are
performed in the main cycle of the procedure.

Printout of the RezVan.dat source file with the calculation results:
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Calculation of pendulum oscillations
Entered data:
C= .1000E+01 H= .4550E+00 F= .9000E+00
EPS1= .1000E-02 EPS2= .1000E-03 Hl1= .1000E+01 HM= .1000E+01
KER = 1 1 0 2 0 0 0 7 0 0
K=2

OM= .1000E+01 A= .1259E+01

X1Cl= .1259E+01 X1S1l= .0000E+00 X2Cl= .000O0E+00 X2S1=-.1259E+01
8 16

Calculation:

Amplitudes of harmonics of the 1l-st variable:

X1 (cl)= .1340E+01 X1(sl)= .7881lE-14 X1(1)= .1340E+01
X1 (c3)= -.6973E-02 X1(s3)= .5264E-01 X1(3)= .5310E-01
X1 (c5)= -.6343E-02 X1 (s5)= .8976E-02 X1(5)= .1099E-01
X1 (c7)= -.3347E-02 X1(s7)= .2136E-02 X1(7)= .3971E-02
Amplitudes of harmonics of the 2-st variable:

X2 (cl)= .3444E-06 X2 (sl)= -.1243E+01 X2(1)= .1243E+01
X2 (c3)= .1465E+00 X2 (s3)= .1941E-01 X2(3)= .1478E+00
X2 (c5)= .4163E-01 X2 (s5)= .2942E-01 X2 (5)= .5098E-01
X2 (c7)= .1387E-01 X2 (s7)= .2174E-01 X2(7)= .2578E-01
Circular frequency of the fundamental harmonic = .9277E+00

The results of solving this problem, depending on the value 7, are shown in Table 4.5.

Table 4.5. Calculation results for equation (4.58)

n a, ds ds a; @

1 1.296 0.9706
3 1.296 0.048 0.9706
5 1.326 0.051 0.011 0.9419
7 1.340 0.053 0.011 0.004 0.9277

Let's modify the problem discussed above - instead of viscous damping, we will install
damping that creates a gas medium: let the resistance force be proportional to the product

x‘x‘ . For this case, the oscillation of the pendulum with the pushing force is described by the
equation

X+wyx = fsign(%) —a x|x]. (4.66)
Taking what
x =asin(oyt + @) , (4.67)
by averaging we get
a= |31 (4.68)
20w,
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Having accepted the value
=09, a=13; w,=1.0, (4.69)
we have

a=1.019. (4.70)

Now let's calculate this nonlinear oscillation by numerical simulation using DHM-S. For
this, equation (1) is reduced to the form

dx .
Xz 6=0, (4.71)
dt
here
X z - X e 0
=" z=|"=| , T° =l =] @7
X, Z, Wy X, +ox, ‘xz‘ e, 0

The expression for the derivative dZ/dx required for constructing an instantaneous
mathematical model of the process at the half-period has the form

= o -1
az _ i | (4.73)
dx ||lo, 2a‘x2‘

The block of user program components for this case consists of the Main program
Program Majatl andthe MoDEL procedure of the instantaneous process model (on a half-
cycle), which have the form:

Program Majatl
I-- Calculation of pendulum oscillations in a gaseous environment
.- dX/dt+Z=E
.- X=colon(x1,x2)
I--  Z=colon(z1,22)
I--  E=colon(el,e2)
- z21=-x2;
- z2=C*x1+h*x2*abs(x2)-f*sign(x2)
.- el1=0; e2=0
I-- (variables contain only odd harmonics )
I

Implicit none
real,dimension(42)::Y
real,dimension(40)::E
integer,dimension(10)::KER
real::C,H,F,OM,A,EPS1,EPS2,H1,HM
real::X1C1,X1S1,X2C1,X2S1
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integer::K,NG,NK

common/MP/C,H,F !--- area of memory shared with the Model procedure
open(1,File='"DaniMaj.dat’',status="'old')

read(1,*)C,H,F

read(1,*)EPS1,EPS2,H1,HM

read(1,*)KER

read(1,*)K

close(1)
open(1,file='RezMaj.dat’')

write(1,5)

5 format(2X,'Calculation of pendulum oscillations in gas' /10X,'Entered data:')
write(1,14)C,H,F

14 format(2X,' C=',E10.4,' H=',E10.4,' F=',E10.4)
write(1,15)EPS1,EPS2,H1,HM
15 format(2X,' EPS1=',E10.4,' EPS2=',E10.4,' H1=',E10.4,' HM=',E10.4)
write(1,16)KER
16 format(2X,' KER =',10i5)
Write(1,17)K
17 format(2X,' K=',i2)
OM=sqrt(C); A=sqrt(3.*F/(2.*H*OM**2))
write(1,18)0M,A
18 format(2X,'OM=",E11.4,' A=',E11.4)
X1C1=A; X151=0.; X2C1=0.; X2S1=-A*OM
I--- X1C1,X1S1,X2C1,X2S1 - initial values of the amplitudes of the
I--- first harmonics of variables
write(1,19)X1C1,X1S1,X2C1,X2S1
19 format(2X,'X1C1=',E11.4,' X1S1=',E11.4,' X2C1='/E11.4,' X2S1=',E11.4)
call SizesV(KER(1),K,KER(8),NG,NK)
write(1,20)NG,NK
20 format(2X,'NG=",i3," NK=',i3)
Y=0; Y(NK+1)=OM
Y(1)=X1C1; Y(2)=X1S1; Y(NG+1)=X2C1; Y(NG+2)=X2S1
write(1,21)
21 format(/2X,'Calculatlon:’)
call HARMOSC(K,Y,E,NK,HM,H1,EPS1,EPS2,KER)
close(1)
stop
end Program Majatl

Subroutine Model(AL,M,K,MK,XC,YC,ZC,YXC,ZXC,BM)
! Npoueaypa MUTTEBOI Mogeni npouecy Ha niBnepioai

Implicit none
real::AL
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integer,intent(in)::M,K,MK
real,dimension(MK)::XC,YC,ZC
real,dimension(MK,K)::YXC,ZXC
real,dimension(K)::X,Z
real,dimension(K,K)::ZX,BM
real::C,H,F
integer::i
common/MP/C,H,F !-- A shared area of memory with the main program
BM(1,1)=0.; AL=0.
YC(1)=0.; YXC(1,1)=0.
do i=1,M
call DRAWOUTV(K,XC,MK,X,i)
Z(1)=-X(2)
Z(2)=C*X(1)+H*X(2)*abs(X(2))-sign(F,X(2))
ZX(1,1)=0.
ZX(1,2)=-1.
ZX(2,1)=C
ZX(2,2)=2*H*abs(X(2))
call DRAWUPV(K,Z,ZC,MK,i)
call DRAWUPM(K,ZX,ZXC,MK,i)
end do
return
end Subroutine Model

Printout of the source file RezMaj.dat with the calculation results:

Calculation of pendulum oscillations in gas

Entered data:
C= .1000E+01 H= .1300E+01 F= .9000E+00
EPS1= .1000E-02 EPS2= .1000E-03 Hl= .1000E+01 HM= .1000E+01
KER = 1 1 0 2 0 0 0 5 9 1
K= 2

OM = .1000E+01 A = .1019E+01
X1Cl= .1019E+01 X1S1= .0000E+00 X2Cl= .0000E+00 X2Sl= -.1019E+01
6 11 12 36
Calculation
The h-characteristic is calculating
Refined value 1 root at h= 1.000
(the solution was obtained after the 4-rd iteration)
Amplitudes of harmonics of the 1-st variable:
X1(cl)= .1216E+01 X1l (sl)= -.6529E-12 X1(1l)= .1216E+O01
X1(c3)= .1452E-01 X1 (s3)= .8249E-01 X1(3)= .8376E-01
X1 (c5)= -.1268E-01 X1 (s5)= .1592E-01 X1(5)= .2035E-01
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Amplitudes of harmonics of the 2-st variable:

X2 (cl)= .4739E-06 X2(sl)= -.9979E+00 X2(1)= .9979E+00
X2 (c3)= .2031E+00 X2(s3)= -.3574E-01 X2(3)= .2062E+00
X2 (c5)= .6532E-01 X2(s5)= .5202E-01 X2(5)= .8350E-01
Circular frequency of the fundamental harmonic = .8207E+00

The results of solving this problem, depending on the value 72, are shown in Table 4.6.

Table 4.6. Calculation results for equation (4.66)

n a, a; as as; @

1 1.057 0.9639
3 1.197 0.084 0.8398
5 1.216 0.084 0.020 0.8207
7 1.223 0.084 0.020 0.007 0.8134

4.3. Example of calculating of parametric oscillations

Consider, as an example, the calculation of parametric oscillation in an electric circuit
given in [39]. There, a simple electric circuit is considered, formed by series-connected
inductance L, nonlinear active resistance 7, the value of which, depending on the circuit
current, is determined by the formula

r=R,(1+ B,i’). (4.74)

here R, and /3, - constant values, and with a variable capacity C, the value of which is a
periodic function of time and is determined by the formula
G

C= , (4.75)
l+mcos2mt

here C,, m, @ -constantvalues.

To calculate the amplitude of current fluctuations in this circuit (in other words, the
amplitude of the alternating current) in [39], the method of slowly changing amplitudes was used.
It is assumed that due to the generation of parametric oscillations, the current in the circuit
changes harmonically with the frequency @ according to the expression

i=1 coswt+1 sinwt. (4.76)

Taking into account that the circuit is an oscillating system with low dissipation, neglecting the
terms of the second order of smallness in the equations describing the circuit and averaging the
values of the circuit parameters over the oscillation period, in [39] the so-called shortened

equations were obtained, in which the signs of the derivatives are amplitudes /. and /. An
expression for the current amplitude is obtained from the stationary solution of these equations
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1= a8, o

35, R,
here
1

B o’LC,

£=1 (4.78)

Formulas (4.74)—(4.78) use the same notation as in paragraph 4.5 of the source [39].
Given numerical values of L = 0.025Hn; R, = 0.09 ohms; S, =0.1 1/ A4°: C, =
0.004 F; m = 0.13; @ = 100 1/s, by formulas (4.77) and (4.78) we get & =0 3.277 and

I =23277A.

We will solve the same problem by means of numerical polyharmonic modeling using
DHM-S.

The equations describing the electrical circuit under consideration, in the form of entry
(1.64), have the form

Q+2_

e=0, (4.79)
dt
here
X ; p ritu,
x2 uc y2 uc ZZ u
u,. - capacitor voltsge;
¢ =Li (4.81)

- flux coupling of the inductive element of the circuit.
The derivatives dy/dx and dZ/dx are as follows

e R,(1+38,i%) 1
; —=| l4+mcos2p : (4.82a,06)
dx |~ 0
CO

& o 1

The text of the main program and the Model procedure from the block of user software
components:

PROGRAM ParamOscil
I-- A program for calculating parametric oscillations
I-- in an electric circuit with elements:
I-- periodically variable electrical capacity,

I-- nonlinear active resistance and nonlinear inductance
I

Implicit none
real,dimension(22)::X
real,dimension(20)::E
integer,dimension(10)::KER
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real::OM,EPS1,EPS2,H1,HM
real::R0,BET0,C0,AM,ST1,DST
real,dimension(8)::PT
real::Cl1,Ci2,CU1,CU2
integer::K,NG,NK,NT,i
common/MP/R0,BET0,C0,AM,NT,ST1,DST,PT
open(1,File='DaniV.dat',status='old’)
read(1,1)OM,EPS1,EPS2,H1,HM
read(1,1)R0,BET0,C0,AM
read(1,2)NT
read(1,1)ST1,DST
read(1,1) (PT(i),i=1,NT)
read(1,2)KER
read(1,2)K
read(1,1)CI1,CI2,CU1,CU2
O ClI1,CI2,CU1,CU2 —initial values of the amplitudes of the
I--- first harmonics of variables
1 format(5E10.4)
2 format(10i13)
close(1)
open(1,FILE='RezV.DAT')
write(1,10)
10 format(/5X, 'Incoming data :'/)
write(1,4)OM,EPS1,EPS2,H1,HM
write(1,4)R0,BET0,C0,AM
write(1,3)NT
write(1,4)ST1,DST
write(1,4) (PT(i),i=1,NT)
write(1,11)KER
11 format(2X.’KER = *,10i5)
write(1,12)K
12 format(2X,’K = *,i5)
write(1,4)Cl1,C12,CU1,CU2
3 format(1X,1015)
4 format(1X,5E11.4)
write(1,20)
20 format(/5X,'The results :'/)
call SizesV(KER(1),K,KER(8),NG,NK)
write(1,3)NG,NK
X=0.; X(1)=Cl1; X(2)=CI2;

X(NG+1)=CU1; X(NG+2)=CU2; X(NK+1)=OM
call HARMOSC(K,X,E,NK,HM,H1,EPS1,EPS2,KER)
close(1)

stop
end Program ParamOscil

Subroutine Model(AL,M,K,MK,XC,YC,ZC,YXC,ZXC,BM)

I-- The subroutine implements the instantaneous model on a half-period:

I-- for the value of the composite nodal vector XC

I-- determines the value of the composite nodal vectors YC,ZC
I-- and matrices YXC and ZXC of derivatives

I--- AL - hysteresis loop narrowing factor (not used)

I--- M is the number of nodes per half cycle

I--- K is the order of the system of differential equations

l--- MK=M*K
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I--- BM - matrix of coefficients (not used)
!

Implicit none
real::AL
integer,intent(in)::M,K,MK
real, dimension(MK)::XC,YC,ZC
real,dimension(MK,K)::YXC,ZXC
real,dimension(K)::X,Y,Z
real,dimension(K,K)::YX,ZX,BM
integer::i,NT
real::R0,BET0,C0,AM,ST1,DST,LD,ET,Al
real,dimension(8)::PT
common/MP/R0,BET0,C0,AM,NT,ST1,DST,PT
BM(1,1)=0.; AL=0.
doi=1,M
call DRAWOUTV(K,XC,MK,X,i)
Al=i-1; ET=3.1416*Al/M !--- angular coordinate of the node
call INTLIN(X(1),Y(1),LD,ST1,DST,PT,NT)
Y(2)=X(2)
Z(1)=R0O*X(1)+RO*BETO*X(1)**3+X(2)
Z(2)=-X(1)*(1.+AM*cos(2.*ET))/CO0
YX(1,1)=LD
YX(1,2)=0.
YX(2,1)=0.
YX(2,2)=1.
ZX(1,1)=R0+3.*RO*BETO*X(1)**2
ZX(1,2)=1.
ZX(2,1)=-(1.+AM*cos(2.*ET))/CO
ZX(2,2)=0.
call DRAWUPV(K,Y,YC,MK,i)
call DRAWUPV(K,Z,ZC,MK,i)
call DRAWUPM(K,YX,YXC,MK,i)
call DRAWUPM(K,ZX,ZXC,MK,i)
end do
return
end subroutine Model

Although in this problem the inductance L of the electric circuit is set constant, in the
main program it is provided that it can also be variable - a function of the current, and it is
provided to set values for the variables ST1, DST, PT, NT, which set the tabular curve of
magnetization of the inductive element (ST1 is the value of the current at which the initial linear
part of the magnetization curve ends; DST is the step of the table; PT is the table specifying the
value of flux coupling in the nodes of the table; NT is the number of nodes of the table), and then
instead of (4.81) we have

¢ =9l[i]. (4.83)

The value L in formula (4.82a) is calculated as
L=d¢/di. (4.84)
To determine the values ¢ and L and in the Model procedure, the INTLIN procedure

from Block 4 of the DHM-S (see section 2.2.4.2) is called for execution, which performs linear
interpolation from the PT table.
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According to the described program, calculations were performed for the case of constant
inductance, the magnetization curve is presented as a straight line, the tangent of the angle of
inclination of which is equal to £ =0.025 Hn, and this straight line is presented by table with
three nodes.

The calculation results (only the first harmonic is taken into account) are as follows:

Incoming data:
.1000E+03 .1000E-01 .3000E-02 .1000E+01 .1000E+01
.9000E-01 .1000E+00 .4000E-02 .1300E+00
3
.1000E+01 .5000E+00
.2500E-01 .3750E-01 .5000E-01
KER = 1 0 0 1 0 0 0 1 0 0
K=2
.1500E+01 -.1500E+01 .3000E+01 .4000E+01

T he results:
2 4
Number of the highest harmonic = 1

The initial value of the vector of amplitudes :
.1500E+01 -.1500E+01 .3000E+01 .4000E+01
.1000E+03 .0000E+00

Inconsistencies for the initial wvalue of the vector of

amplitudes:
-.5694E+00 .6944E-01 .6253E+00 .5063E+02
.0000E+00 .0000E+00
Refined value 1 root at h= 1.000
(the solution was obtained after the 2-rd iteration)

Amplitudes of harmonics of the 1l-st variable:
X1l (cl)= .2317E+01 X1l (sl)= -.2317E+01 X1(1)= .3277E+01

Amplitudes of harmonics of the 2-st variable:
X2 (cl)= .5417E+01 X2(sl)= .6170E+01 X2(1)= .8211E+01

Here it is necessary to pay attention that in the input data the 4th element of the KER
array is given the value 1, thereby specifying that the simulated oscillation is parametric.

The above calculation results show that the obtained value of the amplitude of the 1st
harmonic of the loop current is equal to 3.277 A, and this coincides with the accuracy of the third
sign with the results of the analytical calculation by the method of slowly changing amplitudes
using shortened differential equations. This confirms the theoretical correctness of using the
method of slowly varying amplitudes to solve this problem with the replacement of the differential
equations describing the processes in the circuit with shortened equations: the results of the
calculation based on the shortened equations are the same as the numerical solution of the full
differential equations without them simplifications and neglect by individual members.

Repeating the same calculations, but taking into account the 3rd, 5th and 7th harmonics
in addition to the 1st harmonic, it was obtained that the 3rd harmonic of the current is 0.4%, the
5th and 7th harmonics of the current practically zero. The practical absence of variable higher
harmonics in time dependences is explained as follows. In this problem, the generation of higher
harmonics can only be carried out by an active resistance, because it is nonlinear, but, given
that the voltage drop on it at the given input data is much smaller than the voltage drops on the
capacitor and inductance, therefore, the higher harmonics of the current generated by its
nonlinearity and voltages are negligible.
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Let's complicate the task. Let the inductance also be nonlinear and the dependence of
flux coupling on the current (magnetization curve, similar to Fig. 4.2) given by the table. Its initial
part is linear, and it determines the same inductance (0.025 H) as in the case considered above.
After the loop current reaches a value of 1.0 A, the nonlinear part of the magnetization curve
begins.

The calculation results in this case, taking into account harmonics up to and including
the 7th, are as follows:

Incoming data:
.1000E+03 .1000E-01 .3000E-02 .1000E+01 .1000E+01
.9000E-01 .1000E+00 .4000E-02 .1300E+00
8
.1000E+01 .2500E+00
.2500E-01 .2830E-01 .3120E-01 .3320E-01 .3450E-01
.3550E-01 .3620E-01 .3670E-01
1 0 0 1 0 0 0 7 0 0
2
.1500E+01 -.1500E+01 .3000E+01 .4000E+01
T h e results:
8 16
Number of the highest harmonic = 7
The initial value of the vector of amplitudes :
.1500E+01 -.1500E+01 .0000E+00 .0000E+00
.0000E+00 .0000E+00 .0000E+00 .0000E+00
.3000E+01 .4000E+01 .0000E+00 .0000E+00
.0000E+00 .0000E+00 .0000E+00 .0000E+00
.1000E+03 .0000E+00
Inconsistencies for the initial value of the vector of
amplitudes:
.3870E+00 .1026E+01 .1067E+01 -.1098E+01
.1689E+00 .1690E+00 .1288E+00 -.1287E+00
.6253E+00 .5063E+02 -.2437E+02 .2438E+02
.9936E-03 .1982E-02 .1569E-02 .3033E-02
.0000E+00 .0000E+00
Refined value 1 root at h= 1.000
(the solution was obtained after the 2-rd iteration)
Amplitudes of harmonics of the 1-st variable:
X1 (cl)= .4170E+00 X1l (sl)= -.1150E+01 X1(1)= .1223E+01
X1 (c3)= -.4553E-01 X1 (s3)= .1917E-01 X1(3)= .4940E-01
X1 (c5)= .3108E-01 X1 (s5)= .6536E-02 X1(5)= .3176E-01
X1 (c7)= -.7244E-02 X1 (s7)= -.9633E-02 X1(7)= .1205E-01
Amplitudes of harmonics of the 2-st variable:
X2 (cl)= .2685E+01 X2(sl)= .1103E+01 X2(1)= .2902E+01
X2 (c3)= .4596E-01 X2(s3)= -.1367E-01 X2 (3)= .4795E-01
X2 (c5)= -.3574R-02 X2 (s5)= .1383E-01 X2 (5)= .1428E-01
X2 (c7)= .3293E-02 X2 (s7)= -.1867E-02 X2(7)= .3785E-02

As you can see, the calculation results are significantly different from the previous case,
when the inductance is constant: 1st harmonic current = 1.223 A (it differs by 2.68 times!).
Noticeable values of higher harmonics: 3rd — 4%, 5th — 2.6% and 7th - 0.9%.

In this case, the maximum values of the loop current, and, therefore, the amplitude of
the first harmonic of the current are significantly limited by the nonlinearity (saturation) of the
inductance.

The method of slowly changing amplitudes is no longer suitable for solving this problem
with a nonlinear inductance.
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Afterword

Examples of numerical modeling of nonlinear oscillations, considered in the last chapter
of this book, are simple: with a small number of variables (no more than three), with nonlinearities
that are functions of only one variable, etc. The selection of simple examples was determined
by the author's efforts to focus the reader's attention on ways of using the proposed method and
its software. It is advisable to undertake modeling of nonlinear oscillations in more complex
systems only after thoroughly mastering the method itself and its software.

Having worked through this book, the user is already able to tackle such more complex
tasks. And here, the main focus should be on the development of an instantaneous (period or
half-period) model of the system process with the most detailed consideration of nonlinearities.

Many problems for calculating periodic processes in such complex objects as electric
machines (synchronous, asynchronous, direct current) were solved by the method described in
the book, taking into account their nonlinearities, in particular, the saturation of the magnetic
circuit, the presence of semiconductor windings in their circuits and others nonlinear elements,
when considering instantaneous models of electric machines both from the standpoint of the
theory of electric circuits and from the standpoint of the theory of the electromagnetic field [9, 11
- 19, 21 - 26]. And the experience gained in solving these problems can be used in the
development of models of nonlinear oscillations in objects of a different physical nature -
mechanical, acoustic, radio-electronic, etc.

This book does not consider some additional possibilities of the proposed method, in
particular, taking into account the symmetry of periodic processes (such symmetry exists, for
example, in symmetrical multiphase electric circuits), which allows minimizing the number of
unknown amplitude vectors in the problem. If necessary, the reader can familiarize himself with
such possibilities in [15, 17, 20]. This also applies to the search for periodic solutions of nonlinear
systems of differential equations with partial derivatives with periodization in time and one of the
spatial coordinates (here calculation of the stationary electromagnetic field in massive
ferromagnetic media [19, 23, 25]).The proposed method and its software do not impose any
restrictions on the dimension of the problem (the number of variables) and the number of
harmonics taken into account, the only limitation here is only the performance of the computer
used - its speed and memory capacity.

However, the author, promoting his method, would consider it unreasonable to contrast
it with other methods of calculating (modeling) nonlinear oscillations. This is only an alternative
that has its own niche in this area. And the most expedient is often the use of not one, but
several methods in their interaction. Thus, in particular, in several examples given in Chapter
4, initial approximations of amplitudes of harmonics of oscillations are obtained by analytical
methods (harmonic linearization, slowly changing amplitudes, asymptotic Bogolyubov-
Mitropolsky, harmonic balance, etc.).

The author wishes the reader and user of this book, who decides to use the proposed
differential harmonic method and its software in their scientific or engineering developments,
and may even improve them (the author would welcome this), success in solving various
problems, both simple and complex , in numerical modeling of nonlinear oscillations in systems
of different physical nature.
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