Promising world scientific and technological research areas in the field of "Waste products"

  Upload file

Promising world scientific and technological research areas in the field of "Waste products": monograph

Kvasha T. K. — Head of Department of State Institution “Ukrainian Institute of Scientific and Technical Expertise and Information”, Antonovicha str., 180, Kyiv, Ukraine, 03680; +38 (044) 521-00-74;; ORCID: 0000-0002-1371-3531

Paladchenko O. F. — Head of Sector of State Institution “Ukrainian Institute of Scientific and Technical Expertise and Information”, Antonovicha str., 180, Kyiv, Ukraine, 03680; +38 (044) 521-00-80;; ORCID: 0000-0002-5436-1608

Molchanova I. V. — Senior Research of State Institution “Ukrainian Institute of Scientific and Technical Expertise and Information”, Antonovicha str., 180, Kyiv, Ukraine, 03680; +38 (044) 521-00-80;; ORCID: 0000-0003-1679-5621

Abstract. The high dynamics of growth in the volume of waste generation around the world is one of the key global environmental problems. Sustainable waste management is an important prerequisite for the development of sustainable and viable cities, but at the same time it is a challenge for many countries, including Ukraine. Effective waste management is expensive, often accounting for 20 to 50 percent of municipal budgets. The real way out is to transform the problem into new opportunities through the widespread use of modern waste processing technologies with the involvement of business.
The inclusion in the global Sustainable Development Goals (SDGs) of targets to ensure resources use efficient and the disconnection between economic growth and environmental degradation (SDG 12) has fuelled the growth of research and patents on resource efficiency and waste management.
The achievement of SDG 12 in Ukraine in the terms of waste is expected using innovative technologies to reduce the volume of waste generation, increase the volume of their processing, and reuse (task 12.4).
A significant amount of develop appropriate technologies research is being carried out around the world. Identify promising scientific and technological world trends and assess the compliance of these trends with research topics carried out by Ukrainian scientists is an urgent task for Ukraine. This identification is important for Ukraine, since progress in this area is one of the key factors in reducing environmental pollution.
The main research methods aimed at determining these trends are scientometrics and patent analyses. Research bases, as a rule, are international bases of scientific (Web of Science, Scopus, e-library) and patent (Orbit, Derwent Innovation, PatSnap, etc.) publications.
The Ukrainian Institute for Scientific and Technical Expertise and Information carried out a scientific study with respect promising areas of research and technologies in the field of "Waste products" based on publications in the international Web of Science database and patents in the international Derwent Innovation database. The authors of the monograph carried out 1) the development of the methodology of scientific and technological forecasting using the patent landscape and intellectual property analytics; 2) the definition of the world's most promising scientific and technological areas; 3) the assessment of compliance the subject of Ukrainian patents with these areas.

Keywords: scientometrics, patent analysis, intellectual property analytics, technologies of circular economy, world technological trends: SDG 12.


  1. (2019, September 23) Solid Waste Management. The World Bank Group. URL: – Title from the screen.
  2.  Gibson, E., Daim, T., Garces, E. & Dabic, M. (2018) Technology Foresight: A Bibliometric Analysis to Identify Leading and Emerging Methods. Foresight and STI Governance, 12 (1), 6–24.
  3. Upham, S. P. & Small, H. (2010) Emerging research fronts in science and technology: Patterns of new knowledge development. Scientometrics, 83, 15–38.
  4. Guo, H., Weingart, S., Borner, K. (2011) Mixed-indicators mode &l for identifing emerging research areas. Scientometrics, 89 (1), 421–435.
  5. Glänzel, W. (2012) Bibliometric methods for detecting and analyzing emerging research topics. El profesional de la información, 21 (1), 194–201.
  6. Igami, M. & Saka,  A. (2007) Capturing the evolving nature of science, the development of new scientific indicators and the mapping of science. OECD Science, Technology and Industry Working Papers, 2007/1. Paris, OECD Publishing.
  7. Kim, Y. G.,  Suh, J. H. & Park, S. C.  (2008) Visualization of patent analysis for emerging technology. Expert Systems with Applications, 34, 1804–1812.
  8. Morris, S., Yong, C. De, Wu, Z., Salman, S. & Yemenu, D. (2002)  DIVA: A visualization system for exploring document databases for technology forecasting. Computers and Industrial Engineering, 1 (43), 841–862.
  9. Chen, Ch. (2006)  CiteSpace II: Detecting and Visualizing Emerging Trends and Transient Patterns in Scientific Literature. Journal of the American Society for Information Science and Technology, 57, 359–377.
  10. Shibata, N., Kajikawa, Y.  & Sakata, I.  (2008) Detecting emerging research fronts based on topological measures in citation networks of scientific publications. Technovation, 28, 758–775.
  11. Campbell, R. S. (1983) Patent trends as a technological forecasting tool. World Patent Information, 5, 137-143.
  12. Mogee, M. E. (1991) Using patent data for technology analysis and planning. Research Technology Management, 34, 43-49.
  13. Palmer, P. J., Williams,  D. J. & Hughes, C. (1999) Observations and models of technology trends within the electronics industry.  Engineering Science and Education Journal, 8, 233-240.
  14. Adams, K., Kim, D., Joutz, F. L., Trost, R. P.  & Mastrogianis, G.  (1997) Modeling and forecasting U.S. patent application filings. Journal of Policy Modeling, 19, 491-535.
  15. Dehon, C. & Pottelsberghe, B. Van (2003) Implementing a forecasting strategy for PCT applications at WIPO. Proceedings of the WIPO–OECD Workshop on Statistics in the Patent Field. Geneva, Switzerland.
  16.  Harhoff, D. (2001) Improvements of Methods for Forecasting Patent Filings, Research Program announced by the European Patent Office. Background Information Document.
  17. Hingley, P.  & Nicolas, M. (2004)  Methods for forecasting numbers of patent applications at the European Patent Office. World Patent Information, 26, 191-204.
  18. Joutz, F. L. (2003) Forecasting USPTO patent application filings. Proceedings of the WIPO–OECD Workshop on Statistics in the Patent Field. Geneva, Switzerland.
  19. Joutz, F. L. (2004) Forecasting patent applications at the European Patent Office: a bottom-up versus top-down approach. Proceedings of the WIPO–OECD Workshop on Statistics in the Patent Field. Geneva, Switzerland.
  20. Avdzejko, V. I., Karnyshev, V. I. & Meshcheryakov R. V. (2018) Patentnyj analiz. vyyavlenie perspektivnyh i proryvnyh tekhnologij. Voprosy innovacionnoj ekonomiki, 8 (1), 79-90.
  21. Ernst, H.  (1997). Small Business Economics, 9, 361-381.
  22. Daim, T. U., Rueda, G., Martin, H. & Gerdsri, P. (2006) Forecasting emerging technologies: Use of bibliometrics and patent analysis. Technological Forecasting and Social Change, 73, 981–1012.
  23. Bengisu, M. &  Nekhili,  R. (2006)  Forecasting emerging technologies with the aid of science and technology databases. Technological Forecasting and Social Change, 73 (7), 835-844.
  24. Jianguo, C., Yangyue, S., Hongyun, S. at al. (2018) Managerial Areas of Construction and Demolition Waste: A Scientometric Review. International journal of environmental research and public health,  15 (11), 20.
  25. Chen, L.,  Xiaohui, J. & Xuegang L. (2019) Phytoremediation of Heavy Metal Pollution: A Bibliometric and Scientometric Analysis from 1989 to 2018. International journal of environmental research and public health., 16 (23), 28.
  26. Yuening, L., Shanxue, J., Ting, W. at al.  (2018) Research on biochar via a comprehensive scientometric approach. RSC Advances, 8 (50), 28700-28709.
  27. Wang, M. A., Ping, L., Zhaoliang. G.  at al. (2019) Scientometric Review of Resource Recycling Industry. International journal of environmental research and public health, 16 (23), 18.
  28. Cheung, K. & Das, D. B. (2016) Microneedles for drug delivery: trends and progress. RSC Advances, 23 (7), 2338- 2354.
  29. Fujii, H., Kentaro, Y. & Ken, S. (2016)  Research and Development Strategy in Biological Technologies: A Patent Data Analysis of Japanese Manufacturing Firms. Sustainability, 8 (4).
  30. Rongchun, Sh., Ling, T. &  Bin, Ya. (2019) Techno-economic analysis of jet-fuel production from biorefinery waste lignin. Biofuels bioproducts & Biorefining-biofpr, 13 (3), 486-501.
  31. Gnanaraj, S. J.,  Lee, J. R., J, Levine, M. A. at al. (20018) Sustainable Waste Tire Derived Carbon Material as a Potential Anode for Lithium-Ion Batteries. Sustainability, 10 (8), 2840.
  32. Wijitkosum, Saowanee, Jiwnok, Preamsuda (2019) Elemental Composition of Biochar Obtained from Agricultural Waste for Soil Amendment and Carbon Sequestration. Applied sciences-basel, 9 (19), 3980.
  33. 33. Pershina, A., Ponomarenko, А. & Borodacheva, Е. (2017) Modification of plaster compositions for building facade finishing with nanotechnological materials. International Science Conference SPbWOSCE – SMART City (Petersburg Polytechn Univ, St Petersburg, RUSSIA, NOV 15-17, 2016). MATEC Web of Conferences. Vol. 106, 03023.
  34. SHved, V. V. (2019) Analiz praktyky vykorystannia naukometrychnykh platform v Ukraini Informatsiini tekhnolohii i zasoby navchannia 69 (1), 235-245. URL: ISTANNA_NAUKOMETRICNIH_PLATFORM_V_UKRAINI
  35. Bohdanov, V. L. (2016) Statystychnyi ta naukometrychnyi analiz efektyvnosti naukovoho potentsialu: naukove vydannia. Natsionalna akademiia nauk Ukrainy, 229 s. URL: – Назва з екрана.
  36. Yevtushenko, V. M. (2019) Naukometrychnyi analiz publikatsiinoi aktyvnosti u sferi «Life sciences» u sviti ta Ukraini. Nauka, tekhnolohii, innovatsii., 2, 23-33. URL:
  37.  Koretskyi, A. I. (2013) Vyznachennia realnykh napriamiv priorytetnoho rozvytku nauky shliakhom analizu haluzevoi dynamiky ukrainskykh publikatsii. Nauka ta naukoznavstvo, 4, 23-33.
  38. Tronko, M. D. & Paster I. P. (2019) Naukometrychnyi analiz publikatsiinoi aktyvnosti naukovtsiv DU «Instytut endokrynolohii ta obminu rechovyn im. V. P. Komisarenka NAMN Ukrainy» za danymy naukometrychnoi bazy danykh Google Sc,holar. Endokrynolohiia, 24 (1). URL: – Назва з екрана.
  39. Waste, overview. Environmental Data Centre on Waste, Eurostat. European Commission.  URL:
  40.  New Circular Economy Action Plan, 2020. The European Commission. 2020  Environment policies. URL: – Title from the screen.
  41.  European Commission Adopts Circular Economy Action Plan, 2020. URL: %2029%20May%202020&utm_content=SDG%20Weekly%20Update%20- %2029%20May%202020+CID_b348195e855df16ec318bc4ed85a95b7&utm_source =cm&utm_term=Read
  42.  Pro Osnovni zasady (stratehiiu) derzhavnoi ekolohichnoi polityky Ukrainy na period do 2030 roku : Zakon Ukrainy vid 28 liutoho 2019 r. Informatsiinyi№ 2697-VIII. URL:
  43.   Natsionalna stratehiia upravlinnia vidkhodamy v Ukraini do 2030 roku : Skhvalena Rozporiadzhenniam Kabinetu Ministriv Ukrainy vid 08 lystopada 2017 r. № 820-р. URL:р.
  44.  (2017) Tsili Staloho Rozvytku: Ukraina: Natsionalna dopovid . Ministerstvo ekonomichnoho rozvytku i torhivli Ukrainy. URL:
  45.  Mizhnarodna patentna klasyfikatsiia (MPK-2020.01). URL: – Назва з екрана.
  46.  Bohomazova,  V. M.  & Kvasha, T. K. (2020) Analiz perspektyvnosti svitovykh naukovykh ta tekhnolohichnykh napriamiv rozvytku u sferi transportu. Nauka, tekhnolohii, innovatsii, 2, 33-43. doi: 


  • Національна академія педагогічних наук України
  • DB «Technologies of Ukraine»
  • DB "Research, developmental works and dissertations of Ukraine"
  • DB «Innovative technologies and developments»
  • DB «Scientific periodicals of the Ministry of Education and Science of Ukraine»
  • DB «Scientific and technical events»